Customized Relationship Graph Neural Network for Brain Disorder Identification
摘要
背景: 大脑网络/图的连接结构能够揭示不同脑区之间的分离与整合模式。大量研究表明,特定的脑部疾病与某些脑区内部异常的连接模式相关。因此,已有多种图神经网络(GNN)模型被提出,以自动识别脑图中的异常整合模式。
目的: 现有基于GNN的模型通常以统计特定指标构建脑网络/图,而这些输入结构无法被训练。这一局限可能导致模型在下游任务中的表现受限,从而影响最终结果。因此,提出了一种定制关系图神经网络(CRGNN),以弥合图结构与下游任务之间的差距,使模型能够根据具体任务动态学习最优的脑网络/图。
方法: 设计了一种包含多个参数化门控单元的模块,以保留不同脑区之间的因果关系。此外,提出了一种新的节点聚合规则,并引入了适当的约束条件,以提高模型的鲁棒性。
结果: 在两个公开数据集上的实验结果表明,该方法在性能上优于现有方法。模型的实现代码已公开。代码地址
方法
Figure 1 展示了所提出的 CRGNN 框架的详细示意图,该框架由两个关键组件组成:定制关系模块(CRB) 和 关系聚合模块(RAB)。其中,CRB 旨在构建不同脑区之间的关系,并直接以 fMRI 信号 作为输入,其中 (t) 表示时间序列的长度,(v) 代表基于特定脑图谱 定义的脑区数量。CRB 由 (v) 个可学习的门控结构组成,每个门控单元用于保留其他脑区对特定脑区的影响,并最终整合所有门控单元的输出,构建脑网络/图 (G)。
在此基础上,RAB 进一步基于学习得到的图结构 (G) 对节点特征进行聚合,并将其映射到联合潜在空间,以获取全图级别的表示。最终,模型利用该图级表示生成个体层面的预测结果。
实验结果