sc.pp.normalize_per_cell和sc.pp.normalize_total()

测试sc.pp.normalize_per_cell

import numpy as np
import scanpy as sc 
x=np.array([[1,2,3],[2,3,4],[1,1,3],[0,2,10]])
adata=sc.AnnData(x)
adata.raw=adata.copy()
#print(adata.X)
# adata.raw=adata.copy()
# sc.pp.scale(adata)
# print(adata.X)
ff=np.median(np.sum(x,axis=1))/np.sum(x,axis=1)
print(np.dot(np.diag(ff),x))

sc.pp.normalize_per_cell(adata)
print(adata.X)
# sc.pp.normalize_total(adata.raw.X)
# print()

结果如下
在这里插入图片描述注意这个
在这里插入图片描述

测试sc.pp.normalize_total

import numpy as np
import scanpy as sc 
x=np.array([[1,2,3],[2,3,4],[1,1,3],[0,2,10]])
adata=sc.AnnData(x)
sc.pp.normalize_total(adata)
print(adata.X)

结果如下
在这里插入图片描述

验证sc.pp.normalize_per_cell

x=np.random.rand(5,3)
#print(x)

#print(x)
adata=sc.AnnData(x)
ff=np.median(np.sum(x,axis=1))/np.sum(x,axis=1) #如果什么都不设置,那么最终得到的结果是,每个细胞在所有基因的表达总和会是一个中位数值
# 这个中位数是如何得到的呢,是首先计算每个细胞初始所有基因表达的总和求中位数的到的,然后对每个细胞的基因表达乘以一个对应的倍数,从而满足
# 中位数的条件。
print(np.dot(np.diag(ff),x))
print("====================")
sc.pp.normalize_per_cell(adata) # 另外做一些删减,并不是所有的细胞都能被保留
print(adata.X)

在这里插入图片描述

记录python的操作

按列操作实现1

import numpy as np
m = np.array([[1,2,3],[4,5,6],[7,8,9],[2,3,-10]])
c = np.array([-1,1,4])
m * c  ## 直接按列乘了,而不是按行操作,但是前提是列的维度和一维数组的维度是一致的

在这里插入图片描述

按列操作实现2

np.dot(m,np.diag(c))

在这里插入图片描述

按行操作实现1

import numpy as np
m = np.array([[1,2,3],[4,5,6],[7,8,9],[2,3,-10]])
c = np.array([-1,1,4,2])
m * c[:, np.newaxis]
#np.dot(c.reshape(1,len(c)),m),这个做的是矩阵乘法

结果如下
在这里插入图片描述

按行操作实现2

(m.T * c).T

在这里插入图片描述

按行操作实现3

m * c[:, None]

在这里插入图片描述

按行操作实现4

np.dot(np.diag(c),m)

结果如下
在这里插入图片描述

今天再次遇到了这个问题,再复习一下

首先人家的代码

def take_norm(data, cellwise_norm=True, log1p=True):
    data_norm = data.copy()
    data_norm = data_norm.astype('float32')
    if cellwise_norm:
        libs = data.sum(axis=1)
        norm_factor = np.diag(np.median(libs) / libs)
        data_norm = np.dot(norm_factor, data_norm)

    if log1p:
        data_norm = np.log2(data_norm + 1.)
    return data_norm

这个相当于以下的操作

sc.pp.normalize_total(adata)
sc.pp.log1p(adata)

注意sc.pp.normalize_total(adata)不要设置targe_sum参数
但是你会发现这个结果还是不一致哈哈哈,因为
sc.pp.log1p是以自然对数(就是e为底的),而take_norm函数中是np.log2()是以2为底的,两者差了一个倍数,需要注意

import scanpy as sc 
import numpy as np

import pandas as pd 

def take_norm(data, cellwise_norm=True, log1p=True):
    data_norm = data.copy()
    data_norm = data_norm.astype('float32')
    if cellwise_norm:
        libs = data.sum(axis=1)
        norm_factor = np.diag(np.median(libs) / libs)
        data_norm = np.dot(norm_factor, data_norm)

    if log1p:
        data_norm = np.log2(data_norm + 1.)
    return data_norm

data=np.array([
   [3, 3, 3, 6, 6],
   [1, 1, 1, 2, 2],
   [1, 22, 1, 2, 2],
])

adata = sc.AnnData(data)
sc.pp.normalize_total(adata)
sc.pp.log1p(adata,base=2)
print(adata.X)

data_norm=take_norm(data)
print(data_norm)

结果如下

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值