逻辑函数
一个逻辑函数一般有以下5种不同的表示方法:
(1)真值表:列出输入变量的全部组合与对应输出的列表。它可以直观地反映输入逻辑变量的取值和输出的关系, 一个确定的逻辑函数只有一个真值表。
(2)逻辑表达式:将输出表示为输入逻辑变量进行与、或、非等运算的逻辑关系式。它书写方便,形式简洁,便于进行变换和用逻辑符号表示。
(3)逻辑图:将逻辑函数中各变量之间的与、或、非等逻辑关系用逻辑符号表示,表达输入一输出的电路关系。逻辑符号和器件之间有明显的对应关系,便于制成实际电路图。
(4)波形图(又称定时图):由输入-输出信号的时间波形对应来表达系统的逻辑关系和信号的延迟特性。它反映了逻辑变量之间随时间变化的规律,与实际电路的电压波形相对应。对组合电路,定时图能够直观地表示输入和输出之间的关系。
(5)卡诺图:卡诺图是真值表的图形表达,主要用于逻辑函数的化简。
例如:举重裁判电路
比赛规则规定,在一名主裁判和两名副裁判中,必须有两人以上(而且必须包括主裁判)认定运动员的动作合格,试举才算成功。比赛时主裁判掌握着开关A,两名副裁判分别掌握着开关B和C。当运动员举起杠铃时,裁判认为动作合格了就合上开关,否则不合。显然,指示灯Y的状态(亮与暗)是开关A、B、C状态(合,上与断开)的函数。
其逻辑函数为:
描述方法:
- 真值表
- 逻辑表达式
按照上述电路可得:Y = A (B + C) - 逻辑图
- 波形图
按照逻辑表达式将人变量与对应的输出变量取值依时间顺序排列起来,就可以得到所要的波形图。
逻辑函数的两种标准形式
最小项
定义:在逻辑函数中,如果一个与项(乘积项)包含该逻辑函数的全部变量,且每个变量以原变量或反变量形式只出现一次,则称该与项为最小项。对于n个变量的逻辑函数共有2”个最小项。
例如:
例如,A、B、C三个变量的最小项有A’B’C’、A’B’C、A’BC’、A’BC、AB’C’、AB’C、ABC’、ABC共8个(即23个)。n变量的最小项应有2"个。
三变量的最小项表:
最小项的性质:
- 对于变量的任一-组取值, 只有一个最小项的值为1。
- 不同的最小项,使其值为1的那组变量取值也不同。
- 对于变量的同–组取值,任意两个最小项与的结果为0。
- 对于变量的同一组取值,全部最小项逻辑或的结果为1。
最小项的编号:
最小项用mi表示,通常用十进制数作最小项的下标编号i。编号方法是:将最小项中的原变量当作1,反变量当作0,则得一组二进制数,其对应的十进制数便为最小项的编号i。
例如:
A ‾ \overline{A} ABC ⇒ \Rightarrow ⇒ 011 ⇒ \Rightarrow ⇒ m3
A B ‾ \overline{B} BC ⇒ \Rightarrow ⇒ 101 ⇒ \Rightarrow ⇒ m5
最小项表达式(标准与或表达式):
任何逻辑函数都是由其变量的若干个最小项构成,都可以表示成为最小项之和的形式。
在与或表达式中,有时与项并不是最小项,可利用
A + A ‾ \overline{A} A = 1的形式补充缺少的变量,将逻辑函数变成
最小项之和的形式。
例如:
写出Y = F(A , B , C) = AB + A ‾ \overline{A} AC的最小项表达式
Y = AB( C ‾ \overline{C} C + C) + A ‾ \overline{A} AC( B ‾ \overline{B} B + B)
= AB C ‾ \overline{C} C + ABC + A ‾ \overline{A} A B ‾ \overline{B} BC + A ‾ \overline{A} ABC
=m6 + m7 + m1 + m3
= ∑ \sum_{} ∑m(1,3,6,7)
*最大项
定义:最大项:最大项是一个和项。对于-一个n变量的函数,该和项包括n个变量中的每一个变量,若每个变量都以原变量或反变量的形式出现一次,且职出现一次,则该和项称为最大项。.
例如,三变量A、B、C的最大项有(A’+ B’+ C’)、(A’+ B’+ C)、(A’+B +C’)、(A’ +B+C)、(A +B’+C’)、(A +B’ +C)、(A +B +C’)、(A +B+C)共8个(即23个)。对于n个变量则有2n个最大项。可见,n变量的最大项数目和最小项数目是相等的。
三变量的最大项表:
最大项性质:
- 对任何一个最大项,只有一组变量的取值组合使得它的值为0。
- 能使最大项的值为0的取值组合,称为与该最大项对应的取值组合;若把与最大项对应的取值组合看成二进制数,则其对应的十进制数就是该最大项的编号i。
- 全部最大项之积恒等于0。
- 任意两个最大项的和恒等于 1。
最大项的编号:
最小项用Mi表示,通常用十进制数作最小项的下标编号i。编号方法是:将最小项中的原变量当作0,反变量当作1,则得一组二进制数,其对应的十进制数便为最大项的编号i。
例如:
A ‾ \overline{A} A + B + C ⇒ \Rightarrow ⇒ 100 ⇒ \Rightarrow ⇒ M4
A + B ‾ \overline{B} B + C ⇒ \Rightarrow ⇒ 010 ⇒ \Rightarrow ⇒ M2