竞争与冒险现象
竞争: 多路信号的电平值发生变化时,在信号变化的瞬间,组合逻辑的输出有先后顺序,往往导致出现一些不正确的尖峰脉冲信号,这些尖峰信号也称为“毛刺”我们将门电路两个输入信号同时向相反的逻辑电平跳变的现象称为竞争。
竞争–冒险: 由于竞争而在电路输出端可能产生尖峰脉冲。
下面为竞争–冒险的由来分析:
如上图左半部分为与门电路,即:Y = AB,在稳定状态下无论是A = 1、B = 0还是A = 0、B = 1,输出都为0,但是在实际电路中,A和B的电平在同时发生改变时,可能存在极短的时间Δt内产生极窄的Y = 1的尖峰脉冲,或称为电压毛刺。(“0”型冒险)
同样,在图有半部分所示的或门电路,即Y = A + B,稳态下无论A=0、B=1还是A=1、B=0,输出都应该是Y = 1。但如果A从1变成0的时刻和B从0变成1的时刻略有差异,而且在A下降到V1H(min)时B尚未上升到V1H(min),则在暂短的Δt时间内将出现A、B同时低于V1H(min)的状态,使输出端产生极窄的Y=0的尖峰脉冲。这个尖峰脉冲同样也是违背稳态下逻辑关系的噪声。(“1”型冒险)
冒险的分类:
冒险可分为静态冒险和动态冒险,静态冒险又可分为静态1型冒险和静态0型冒险。
①“1”型冒险:基于电路功能的稳态分析,期望输出保持稳态1时,电路的输出有产生0尖峰的可能性。
②“0”型冒险:当预期电路有静态0输出时却存在产生1尖峰的可能性。
竞争和冒险的关系:
有竞争不一定存在冒险,如果输出端没有扰脉冲,就不会产生。
冒险冒险一定存在竞争,冒险是竞争的结果。
如果电路仅仅存在竞争而没有冒险,对电路来讲没有任何影响,可以不处理。
如果产生冒险但后续电路对这种现象不敏感,也可以不必处理。
如果后续电路对这种瞬时干扰脉冲有影响,就需要采取措施消除冒险现象。
竞争–冒险产生原因:
由于延迟时间的存在,当一个输入信号经过多条路径传送后又重新会合到某个门上,由于不同路径上门的级数不同,或者门电路延迟时间的差异,导致到达会合点的时间有先有后,从而产生瞬间的错误输出。
主要受到时间延迟、过渡时间、逻辑关系、延迟信号相位的制约。
①时间延迟,即信号在传输中受路径、器件等因素影响,输入端信号间出现的时间差异。
②过渡时间,即脉冲信号状态不会发生突变,必须经历一段极短的过渡时间。
③逻辑关系,即逻辑函数式。
④延迟信号相位,即延迟信号状态间的相位关系,涵盖延迟信号同相位和延迟信号反相位两个方面。
竞争–冒险的判别法
- 代数法
分析输入变量的取值情况,看是否存在某些输入变量的特定取值使表达式出现 Y = A + A ‾ \overline{A} A(存在“1”冒险) 或者Y = A A ‾ \overline{A} A(存在“0”冒险)
例如:
判断A C ‾ \overline{C} C + A ‾ \overline{A} AB + A ‾ \overline{A} AC是否存在冒险现象?
[分析]:A和C在表达式中分别出现原变量和反变量,因此可能存在竞争。
当B=1,C=0时,L= A + A ‾ \overline{A} A,所以A可以产生冒险
对于C,无论AB取何值,都不会出现C C ‾ \overline{C} C或者C+ C ‾ \overline{C} C的情况,故C不会出现冒险。
又如:
Y = (A + B) ( B ‾ \overline{B} B + C),当A = C = 0时,Y = B B ‾ \overline{B} B,存在竞争-冒险。 - 卡诺图法
由卡诺图上包围圈的相对位置,判别是否存在冒险现象。
两个卡诺图圈相切,则会出现冒险:(相切时存在原变量和反变量)
两个卡诺图圈相交,则不会出现冒险。(相交时同一变量出现重复) - 采用EDA软件进行时序仿真
消除竞争–冒险的方法
- 接入滤波电容
尖峰脉冲一般都很窄,输出端并接一个很小的滤波电容(几十皮法),足以将其幅度削弱到门电路的阈值电压以下。
消除原因:电容两端的电压不会发生突变,当电压上升的时候,实际上是对电容的充电的过程,由于尖峰脉冲非常窄,所以刚充电一点就会立刻放电,从而达到削弱脉冲的效果。
缺点:增加了输出电压波形的上升时间和下降时间,使波形变坏。
τ = RC(当负载一样的时候,选择的电容越小下降的时间也越短,对电压波形影响越小) - 加选通脉冲
因为冒险发生在输入信号的瞬间,因此可以采用选通脉冲,在输入信号发生变化的瞬间不输出。
利用芯片的使能信号,来控制输出:
缺点:选通宽度、选通时间无法确定。
- 加入封锁脉冲
在输入信号转换时间内,引入一个封锁脉冲,把可能产生干扰的门封住。
封锁脉冲在输入信号的转换前到来,等信号转换完毕后消失。 - 修改逻辑设计
增加冗余项消除冒险,适用范围有限
例如:
Y = AB + A ‾ \overline{A} AC 含有竞争冒险现象。
添加无关项
Y = AB + A ‾ \overline{A} AC = AB + A ‾ \overline{A} AC + BC
缺点:使逻辑设计变得非常复杂。
利用卡诺图分析法:
Y = A B ‾ \overline{B} B + BC
卡诺图为:
有圈相切,有竞争和冒险,添加无关项解决,即:
有Y = A B ‾ \overline{B} B + BC + AC