具有约束关系的逻辑函数化简

约束项和约束条件
  • 概念
    约束项: 不可能出现的取值组合所对应的最小项;
    任意项: 出现以后函数的值可任意规定的取值组合所对应的最小项;
    无关项: 约束项和任意项的统称。

引例:假设用A、B、C三个按钮分别去控制一个计算器的加法、减法和乘法三种操作,由于计算器在某一时刻只能进行一种操作,所以不允许两个或两个以上按钮同时按下。规定按下为“1”,未按下为“0”,结果用Y表示,有结果为“1”,无结果为“0”,分析该逻辑问题。
解:列真值表分析:

A    B    CY
0    0     00
0    0     11
0    1     00
0    1     1x
1    0     01
1    0     1x
1    1     0x
1    1     1x

则有约束项:011、101、110、111不会出现的最小项组合,即: A ‾ \overline{A} ABC、A B ‾ \overline{B} BC、AB C ‾ \overline{C} C、ABC.
约束条件: 由约束项加起来构成的值为0的逻辑表达式。
由上例:
标准与或式:


A ‾ \overline{A} ABC + A B ‾ \overline{B} BC + AB C ‾ \overline{C} C + ABC = 0
∑ \sum{} d(3, 5 ,6, 7)

最简与或式:


AB + BC + AC = 0

约束项在卡诺图和真值表中用“×”来标记,在逻辑式中则用字母d或md,表示。

无关项在化简逻辑函数中的应用

化简具有无关项的逻辑函数时,如果能合理利用这些无关项,一般都可得到更加简单的化简结果。
为达到此目的,加入的无关项应与函数式中尽可能多的最小项(包括原有的最小项和已写人的无关项)具有逻辑相邻性。
合并最小项时,究竟把卡诺图中的×作为1(即认为函数式中包含了这个最小项)还是作为0(即认为函数式中不包含这个最小项)对待,应以得到的相邻最小项矩形组合最大、而且矩形组合数目最少为原则。
例如:
用卡诺图化简逻辑函数Y = F(A , B , C) = AC + A ‾ \overline{A} A B ‾ \overline{B} BC + B ‾ \overline{B} B C ‾ \overline{C} C,约束条件为 B ‾ \overline{B} B C ‾ \overline{C} C = 0。
若不考虑约束项:
在这里插入图片描述
考虑约束项:
在这里插入图片描述
例如:
用卡诺图化简逻辑函数Y = F(A , B , C) = ∑ \sum{} m(3, 6 ,8, 10,13) + ∑ \sum{} d(0, 2, 5 , 7, 11, 12, 15)
解: 画出函数Y的卡诺图
在这里插入图片描述
画出卡诺圈
在这里插入图片描述
写出最简与或式

Y = BD + A ‾ \overline{A} AC + B ‾ \overline{B} B D ‾ \overline{D} D

最后加上约束条件
注意:应把所有的“1”画在卡诺圈内,而不是“x”。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值