约束项和约束条件
- 概念
约束项: 不可能出现的取值组合所对应的最小项;
任意项: 出现以后函数的值可任意规定的取值组合所对应的最小项;
无关项: 约束项和任意项的统称。
引例:假设用A、B、C三个按钮分别去控制一个计算器的加法、减法和乘法三种操作,由于计算器在某一时刻只能进行一种操作,所以不允许两个或两个以上按钮同时按下。规定按下为“1”,未按下为“0”,结果用Y表示,有结果为“1”,无结果为“0”,分析该逻辑问题。
解:列真值表分析:
A B C | Y |
---|---|
0 0 0 | 0 |
0 0 1 | 1 |
0 1 0 | 0 |
0 1 1 | x |
1 0 0 | 1 |
1 0 1 | x |
1 1 0 | x |
1 1 1 | x |
则有约束项:011、101、110、111不会出现的最小项组合,即:
A
‾
\overline{A}
ABC、A
B
‾
\overline{B}
BC、AB
C
‾
\overline{C}
C、ABC.
约束条件: 由约束项加起来构成的值为0的逻辑表达式。
由上例:
标准与或式:
A ‾ \overline{A} ABC + A B ‾ \overline{B} BC + AB C ‾ \overline{C} C + ABC = 0
∑ \sum{} ∑d(3, 5 ,6, 7)
最简与或式:
AB + BC + AC = 0
约束项在卡诺图和真值表中用“×”来标记,在逻辑式中则用字母d或md,表示。
无关项在化简逻辑函数中的应用
化简具有无关项的逻辑函数时,如果能合理利用这些无关项,一般都可得到更加简单的化简结果。
为达到此目的,加入的无关项应与函数式中尽可能多的最小项(包括原有的最小项和已写人的无关项)具有逻辑相邻性。
合并最小项时,究竟把卡诺图中的×作为1(即认为函数式中包含了这个最小项)还是作为0(即认为函数式中不包含这个最小项)对待,应以得到的相邻最小项矩形组合最大、而且矩形组合数目最少为原则。
例如:
用卡诺图化简逻辑函数Y = F(A , B , C) = AC +
A
‾
\overline{A}
A
B
‾
\overline{B}
BC +
B
‾
\overline{B}
B
C
‾
\overline{C}
C,约束条件为
B
‾
\overline{B}
B
C
‾
\overline{C}
C = 0。
若不考虑约束项:
考虑约束项:
例如:
用卡诺图化简逻辑函数Y = F(A , B , C) =
∑
\sum{}
∑m(3, 6 ,8, 10,13) +
∑
\sum{}
∑d(0, 2, 5 , 7, 11, 12, 15)
解: 画出函数Y的卡诺图
画出卡诺圈
写出最简与或式
最后加上约束条件
注意:应把所有的“1”画在卡诺圈内,而不是“x”。