Python——Picovoice实现语音关键词唤醒

本文介绍了如何在Python中配置和使用Picovoice的Porcupine库进行语音关键词检测,包括安装步骤、设置参数(如ACCESS_KEY、关键词列表和灵敏度)、以及在主代码中的应用示例。文中提到了在ARMRV328硬件平台上的性能指标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

文章目录

  • 参考文档:https://picovoice.ai/docs/quick-start/porcupine-python/

配置

pip install pvporcupine

主代码

  • ACCESS_KEY:需要将该参数填入即可
#
# Copyright 2018-2023 Picovoice Inc.
#
# You may not use this file except in compliance with the license. A copy of the license is located in the "LICENSE"
# file accompanying this source.
#
# Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on
# an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the
# specific language governing permissions and limitations under the License.
#

import argparse
import os
import struct
import wave
from datetime import datetime

import pvporcupine
from pvrecorder import PvRecorder

# ##################################################### #
ACCESS_KEY = 'xxxx'	# 更换成自己的
# ##################################################### #

# pvporcupine.KEYWORDS
print(f"Keywords: {pvporcupine.KEYWORDS}")

def main():
    parser = argparse.ArgumentParser()

    parser.add_argument(
        '--access_key',
        default=ACCESS_KEY,
        help='AccessKey obtained from Picovoice Console (https://console.picovoice.ai/)')

    parser.add_argument(
        '--keywords',
        nargs='+',
        help='List of default keywords for detection. Available keywords: %s' % ', '.join(
            '%s' % w for w in sorted(pvporcupine.KEYWORDS)),
        # choices=sorted(pvporcupine.KEYWORDS),
        default=[
### AI数字人对话唤醒实现方法 AI数字人的对话唤醒功能主要依赖于先进的语音识别技术和自然语言处理技术。当用户说出特定的唤醒词时,系统能够迅速响应并启动相应的服务模块。这一过程涉及到多个关键技术环节: - **前端音频采集**:利用高质量麦克风阵列捕捉用户的语音指令[^2]。 - **声学特征提取**:对捕获的声音信号进行预处理,去除背景噪音和其他干扰因素,从而提高后续阶段的准确性。 - **关键词检测(KWS)**:采用专门训练过的模型来高效地识别预先设定好的唤醒词语句,在极短时间内完成匹配操作[^4]。 - **上下文管理**:为了更好地理解用户的意图,还需要维护一定的会话历史记录,以便更精准地解析当前输入的内容[^1]。 ```python import webrtcvad # WebRTC Voice Activity Detector for voice activity detection from porcupine import Porcupine # Porcupine is a cross-platform wake word engine by Picovoice def init_wake_word_detector(model_path, sensitivity=0.5): """ Initialize the wake-word detector using Porcupine. :param model_path: Path to the pre-trained model file. :type model_path: str :param sensitivity: Sensitivity of the wake-word detection (between 0 and 1). :type sensitivity: float :return: An instance of the wake-word detector. """ handle = Porcupine( access_key="YOUR_PICOVOICE_ACCESS_KEY", library_path=pv_library_path, model_file_path=model_path, keyword_file_paths=[pv_keyword_file_path], sensitivities=[sensitivity] ) return handle def process_audio_chunk(wake_word_detector, audio_data): """ Process an incoming chunk of audio data with the wake-word detector. :param wake_word_detector: The initialized wake-word detector object. :param audio_data: Raw PCM audio bytes from microphone input or other source. :return: True if wake-word detected; False otherwise. """ result = wake_word_detector.process(audio_data) return bool(result) ``` ### 案例分享 以某大型金融机构为例,该机构引入了支持全渠道客服咨询业务的一站式解决方案——虚拟动力所提供的AI数字人产品。此款AI数字人在实际应用场景中实现了自动化的客户接待和服务引导工作,不仅有效降低了人力成本,还显著提升了服务质量与效率。特别是其内置的强大唤醒机制使得即使是在嘈杂环境中也能准确无误地激活相应程序,进而开展流畅的人机交互体验。 ### 技术细节探讨 针对不同行业特点定制开发专属版本的过程中,研发团队特别注重以下几个方面: - **高精度KWS算法**:通过不断优化神经网络结构及参数配置,确保即便面对多种方言口音或是轻微失真情况下仍能保持较高的辨识度。 - **低延迟实时反馈**:借助高效的编码解码协议以及合理的资源调度策略,尽可能缩短从接收到命令至作出回应的时间间隔,让用户感受到更加即时性的互动效果。 - **跨平台兼容性保障**:考虑到目标群体可能使用的终端种类繁多,因此在软件层面做了充分适配调整,力求覆盖主流操作系统和平板电脑、智能手机乃至桌面级PC等各类硬件设施。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值