Zero-DCE:Learning to Enhance Low-Light Image via Zero-Reference Deep Curve Estimation论文阅读笔记

-CVPR 2020

-网络结构 

-本文工作

        ①提出一个独立于成对和非配对训练数据的轻量级增强网络,避免了过拟合的风险。

        ②设计一种特定的曲线,能够迭代运用于自身来近似像素和高阶曲线。这种曲线能够在动态范围内有效的进行映射。

        ③提出了一种无参的损失函数来直接估计增强图像的质量。

METHOD

        在给定一张输入图片的情况下,DCE-NET估计出一组最佳拟合光增强的曲线(LE-curves)。而后通过迭代运用曲线来映射所有的像素值,以此获得最终的增强图像。整个框架包括三个关键组件:LE-curve、DCE-Net 和non-reference loss function。

-Light-Enhancement Curve

        受照片编辑软件中曲线调整的启发,设计了一种可以自动将弱光图像映射到增强图像的曲线,其中自适应曲线参数完全取决于输入图像。这种曲线的设计有三个目标:

        ①增强图像的每个像素值应该在0-1之间以此避免溢出阶段引起的信息丢失。

        ②曲线应该单调,以保持相邻像素的差值(对比度)。

        ③在梯度的方向传播过程中,曲线应该简单且可微。

最终设计的曲线公式如下:

其中,每个输入的像素都会在输入之前被归一化至0-1.X代表像素坐标 ,等式左端代表增强后的图像,a为可训练的参数,其取值范围在-1~1之间用来调整LE曲线的峰值和控制曝光等级,如下图所示。

      这样的二次曲线在一些比较挑战性的场景例如非常暗的环境下的调节能力是有限的。为了赋予方法更强的动态范围调节能力,我们不断的迭代该二次曲线进行,进而实现更高阶的曲线。

        更高阶的曲具有更大的曲率,因此赋予我们方法更强的动态范围调节能力。从图中可以看到,当进行四次迭代的时候,该曲线的曲率已经非常大,因此它具有较强的动态范围条件能力。

         高阶曲线已经赋予该方法比较强的动态范围调节能力,但它仍然是一种全局调整曲线。在一些挑战性的场景下会导致局部区域的过度增强或者是欠增强等质量退化问题。为了解决这样的问题,我们进一步将曲线扩展为逐像素点的曲线参数图。

DCE-NET

为了学习输入图像与其最佳拟合曲线之间的映射,提出一个深度曲线估计网络DCE-NET。输入为一张低光照图像,输出是一组对应的高阶曲线的像素级曲线。网络结构由七个卷积层组成

 

 Loss Function

 

 

 

 

 

 

 

 

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值