图像分类1-LeNet模型结构及其Pytorch实现

本文介绍了LeNet-5的起源、在1998年针对手写数字识别的改进,以及如何使用PyTorch实现其网络结构,强调了它是CNN在图像分类领域的里程碑应用。
摘要由CSDN通过智能技术生成

一、LeNet 概况

MNIST 数据集

  • 50000个训练数据
  • 10000个测试数据
  • 图像大小 28×28、10 类

二、LeNet 网络结构

在这里插入图片描述
在这里插入图片描述

三、LeNet 的 Pytorch 实现

### 搭建LeNet-5模型
import torch.nn as nn
from torchsummary import summary
class MyLeNet(nn.Module):
    # 初始化网络结构
    def __init__(self):
        super(MyLeNet
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值