Fast-RCNN模型框架在经过全连接层后再如何处理

Fast-RCNN模型中,经过**全连接层(fully connected layer, FC layer)**后的处理步骤如下:

  1. 分类(Classification)
    全连接层输出的特征向量被送入分类分支,通过一个softmax层对每个候选区域进行分类,输出该区域属于某个预定义类别的概率分布,包括背景类。分类分支的输出维度为 K + 1,其中 K 是类别的数量,额外的 1 是背景类。

  2. 边界框回归(Bounding Box Regression)
    同时,全连接层的特征向量还被送入边界框回归分支,用于对候选区域的边界框进行微调(即进一步修正区域的精确位置)。该分支输出的是每个类别对应的4个回归参数(x, y, w, h),用于调整边界框的坐标和尺寸。

这两个输出(分类和边界框回归)共同完成对每个候选区域的分类和边界框定位,整个过程相对高效。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值