在Fast-RCNN模型中,经过**全连接层(fully connected layer, FC layer)**后的处理步骤如下:
-
分类(Classification):
全连接层输出的特征向量被送入分类分支,通过一个softmax层对每个候选区域进行分类,输出该区域属于某个预定义类别的概率分布,包括背景类。分类分支的输出维度为K + 1
,其中K
是类别的数量,额外的1
是背景类。 -
边界框回归(Bounding Box Regression):
同时,全连接层的特征向量还被送入边界框回归分支,用于对候选区域的边界框进行微调(即进一步修正区域的精确位置)。该分支输出的是每个类别对应的4个回归参数(x, y, w, h),用于调整边界框的坐标和尺寸。
这两个输出(分类和边界框回归)共同完成对每个候选区域的分类和边界框定位,整个过程相对高效。