Pycharm搭建CUDA,Pytorch教程(匹配版本,安装,搭建全保姆教程)

        最近训练模型跑代码需要用到nvidia的cuda架构加速,结果网上几乎找不到什么能直接解决问题的教程,最后东拼西凑了几个小时才搭建完成,所以想整理出这篇集百家之精华的教程,防止自己以后太久不用忘记了。

        首先的先知道配置好这些环境需要准备好哪些东西:

  1. 带有英伟达显卡的电脑(不是英伟达的也不会来找cuda吧,hh)
  2. gpu版的pytorch(pip直接下的都是cpu版的,所以用不了)
  3. 适配显卡的cuda架构

一、安装CUDA

1、了解CUDA版本

    桌面右键打开nvidia控制面板->点击左下角系统信息->点击组件,查看第三行产品名称,为自己电脑所能兼容的最高的cuda版本(如我的电脑最高能兼容12.3版本)

2、安装CUDA

1、进入官网,下载对应的安装程序

2、点击安装程序进行安装

 选择默认路径即可(只是个临时提取安装程序的文件夹)

选择自定义安装

将Visual Studio Integration选项取消(没什么用而且会影响下载)

确定安装路径(可以修改,最好记住)

等待安装即可

安装完成后查看一下是否有环境变量,没有自己手动添加

CUDA_PATH

CUDA_PATH_V12_3

测试环境是否安装成功

打开cmd,输入

nvcc -V

查看cuda版本

输入

set cuda

查看环境变量

如上两图即为下载成功!

二、安装Pytorch

1、了解对应的pytorch版本

要成功运行cuda架构,所需的pytorch版本必须与python和cuda版本对应,以下为cuda与pytorch对应关系

cuda与pytorch版本对应表
CUDA版本可用PyTorch版本
7.50.4.1 ,0.3.0, 0.2.0,0.1.12-0.1.6
8.01.1.0,1.0.0 ,0.4.1
9.01.1.0,1.0.1, 1.0.0,0.4.1
9.21.7.1,1.7.0,1.6.0,1.5.1,1.5.0,1.4.0,1.2.0,0.4.1
10.01.2.0,1.1.0,1.0.1 ,1.0.0
10.11.7.1,1.7.0,1.6.0,1.5.1,1.5.0, 1.4.0,1.3.0
10.21.12.1,1.12.0,1.11.0,1.10.1,1.10.0,1.9.1,1.9.0,1.8.1,1.8.0,1.7.1,1.7.0,1.6.0,1.5.1,1.5.0
11.01.7.1,1.7.0
11.11.8.0
11.31.12.1,1.12.0,1.11.0,1.10.1,1.10.0,1.9.1,1.9.0,1.8.1,1.8.0
11.61.13.1,1.13.0,1.12.1,1.12.0 ,1.13.1
11.71.13.1,1.13.0,1.13.1 ,2.0.0,2.0.1
11.81.13.1,1.13.0 ,2.0.0,2.0.1,2.1.0
12.12.1.0,2.0.1,2.0.0

版本大致按照这个表格对应,最新的cuda12.3版本亲测可以兼容pytorch2.0.0,其余未知,参考官网Previous PyTorch Versions | PyTorch

pytorch与python对应关系

python与pytorch,torchvision版本对应表
torchtorchvisionpython
<=1.0.10.2.2==2.7, >=3.5, <=3.7
1.1.00.3.0==2.7, >=3.5, <=3.7
1.2.00.4.0==2.7, >=3.5, <=3.7
1.3.00.4.1==2.7, >=3.5, <=3.7
1.3.10.4.2==2.7, >=3.5, <=3.7
1.4.00.5.0==2.7, >=3.5, <=3.7
1.5.00.6.0==2.7, >=3.5, <=3.8
1.5.10.6.1==2.7, >=3.5, <=3.8
1.6.00.7.0>=3.6, <=3.8
1.7.00.8.0>=3.6, <=3.8
1.7.00.8.1>=3.6, <=3.8
1.7.10.8.2>=3.6, <=3.9
1.8.00.9.0>=3.6, <=3.9
1.8.10.9.1>=3.6, <=3.9
1.9.00.10.0>=3.6, <=3.9
1.9.10.10.1>=3.6, <=3.9
1.10.00.11.0>=3.6, <=3.9
1.10.10.11.1>=3.6, <=3.9
1.11.00.12.0>=3.6, <=3.9
1.11.10.12.1>=3.6, <=3.9
1.12.00.13.0>=3.7, <=3.10
1.12.10.13.1>=3.7, <=3.10
1.13.00.14.0>=3.7, <=3.10
1.13.10.14.1>=3.7, <=3.10
2.0.00.15.0>=3.8, <=3.11
2.0.10.15.1>=3.8, <=3.11

本人使用的是python3.10和cuda12.3,根据表格,故选择了下载pytorch2.00版本

2、安装pytorch

pytorch一般有两种安装方式,一种是直接运行官网的安装代码,另外一种是使用国内的镜像(推荐)

(1)官网安装

进入官网Start Locally | PyTorch

选择安装方式(conda/pip)

选择对应cuda版本

然后复制红框内代码,在pycharm终端运行

最后终端显示successfully installed即为成功

如要下载历史版本,进入官网Previous PyTorch Versions | PyTorch​​​​​​

在里面查找相应版本的安装指令即可

(2)国内镜像网站安装(推荐)

        在官网安装速度相对较慢,而且受国内外网络影响可能会安装失败,相比较而言用国内的镜像网站能大大提高成功率,既快速又简捷,下面展示镜像网站的安装方式

进入镜像网站download.pytorch.org/whl/torch_stable.html

选择合适的版本,注意一定要选择cu开头的才是gpu版本

torch后面的数字是torch版本,cp后是对应的python版本,还要注意操作系统

下载好后放置在一个文件夹中,如图所示

在pycharm终端进入到该路径下运行代码:pip install "文件名" 进行安装

安装好后进行检验,打开file->settings->project->python interpreter,查看是否有torch

版本后缀一定得是'cu***'才是gpu版

(3)检验CUDA

最后再检验一下能否运行cuda

在cmd或者pycharm终端中调用python,按图中代码输入

>>> import torch
>>> torch.cuda.is_available()
True

若输出为True,那么恭喜你,cuda架构和pytorch环境就搭建好了!!!

如果本篇博客对你有所帮助,那么请别忘了点赞加收藏哦!!!

### CUDA 12.3 Compatible PyTorch Version 为了确保兼容性,CUDAPyTorch版本匹配至关重要。当前最新的 PyTorch 版本支持的 CUDA 版本可能并不总是最新发布的 CUDA 版本。对于 CUDA 12.3,需要确认是否有官方支持的 PyTorch 版本。 根据已知的信息[^3],PyTorch 官方提供了特定 CUDA 版本的支持列表。通常情况下,可以通过访问 PyTorch 的官方网站并选择合适的配置来获取对应版本。然而,在撰写本文时,PyTorch 尚未正式发布针对 CUDA 12.3 的稳定支持版本[^4]。 以下是解决此问题的一般方法: #### 方法一:通过官网查找适配版本 访问 [PyTorch Get Started 页面](https://pytorch.org/get-started/locally/) 并按照提示选择操作系统、包管理器以及所需的 CUDA 版本。如果 CUDA 12.3 已被支持,则会显示对应的命令用于安装指定版本PyTorch。 例如: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.1 -c pytorch -c nvidia ``` 需要注意的是,上述命令中的 `pytorch-cuda=12.1` 是示例值,实际应替换为与 CUDA 12.3 对应的具体版本号。 #### 方法二:手动编译 PyTorch 如果无法找到预构建的二进制文件支持 CUDA 12.3,可以选择从源码编译 PyTorch。这一步骤较为复杂,需满足以下条件: - 确保本地环境已经正确安装CUDA Toolkit 12.3。 - 下载 PyTorch 源代码并通过 CMake 或其他工具进行自定义编译。 参考命令如下: ```bash git clone --recursive https://github.com/pytorch/pytorch.git cd pytorch pip install ninja TORCH_CUDA_ARCH_LIST="8.9" python setup.py develop ``` > **注意事项**: 手动编译可能会遇到依赖项冲突或其他技术难题,建议仅在必要时采用该方案。 #### 方法三:降级至受支持的 CUDA 版本 当找不到完匹配PyTorch-CUDA 组合时,可考虑暂时回退到较低版本CUDA (CUDA 11.x 或 CUDA 12.1),这些版本已被广泛测试并与多个 PyTorch 发布版保持良好兼容性。 --- ### 示例代码片段 以下是一个简单的验证脚本,用于检测当前环境中使用的 CUDAPyTorch 是否正常工作: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print(f"CUDA available: True | Device count: {torch.cuda.device_count()}") print(f"Current device name: {torch.cuda.get_device_name(0)}") else: print("CUDA unavailable.") ``` 运行以上代码可以帮助快速判断所安装PyTorch 是否能够识别 GPU 设备及其驱动程序是否正确加载。 ---
评论 52
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值