(论文和源码)基于DEAP的实时脑电情绪分类系统

论文和源码见个人主页:https://download.csdn.net/download/qq_45874683/85089303

(论文和源码)基于DEAP的实时脑电情绪分类系统

摘要

       在离线模式下,用于情绪分类的数据被存储并可以无限地访问。然而,这些离线模式的方法不适合于实时情绪分类,当数据以连续流的形式出现时,模型只能一次看到数据。我们需要根据情绪状态做出实时反应。为此,我们提出了一种基于实时情绪分类系统(RECS)的Logistic回归(LR),该系统使用随机梯度下降(SGD)算法在线训练。通过使用EEG信号流在线训练模型,所提出的RECS能够实时地对情绪进行分类。为了验证RECS的性能,我们使用了DEAP数据集,这是情绪分类中使用最广泛的基准数据集。结果表明,该方法能有效地从脑电数据流中实时分类情绪,与其他离线和在线方法相比,该方法具有更好的准确性和F1评分。


当前的问题

       传统的机器学习(ML)方法主要用于离线模式,在离线模式下,数据可以被无限次扫描。这些方法在e-learning视角下有局限性,例如

1. 在线学习中的情绪分类需要实时分类,但离线机器学习方法无法做到这一点。

2. 离线机器学习情感分类器需要大量数据,要执行复杂的情感识别,需要适当的训练数据。这些训练数据是不变的,这意味着可以无限期地查看。研究人员使用当前研究中的历史数据来训练机器学习模型(即离线模式训练),然后使用训练过的模型来评估情绪。在实时情绪分类场景中,这样的情况代价高昂且不可行。

       本研究的目的是开发一个实时情绪分类系统,利用实时脑电型号对情绪状态进行分类。我们提出了一个实时情绪分类系统(RECS),该系统是通过使用随机梯度下降(SGD)算法在线训练的逻辑回归(LR)开发的。


目标

       构建一个轻量级的情绪分类器,该分类器可能非常有效,因此可以实时对情绪进行分类,并可用于时间维度非常重要的现实生活环境,例如在电子学习中。


主要贡献:

1.我们开发了一个实时情绪分类系统,使用随机梯度下降(SGD)算法在线训练的逻辑回归(LR)。在我们的例子中,我们使用EEG数据作为生理数据流。EEG数据以流的形式出现,情绪状态被实时分类。

2.我们已经证明,我们提出的RECS分类器可以优于最先进的在线流媒体分类器方法;也就是说,我们考虑了五种在线分类器:霍夫丁树(HT)、自适应随机林(ARF)、动态加权集成(DWE)、加法专家集成(AEE)和霍夫丁自适应树(HAT)。我们还比较了八种离线模式的机器学习方法,包括支持向量机(SVM)、多层感知器(MLP)和决策树(DT),以及文献中的五种在线分类器(朴素贝叶斯、支持向量机、隐马尔可夫模型(HMM)和K-NN)。

3.我们在一个应用场景(e-learning应用)中分析了所提出的方法,在该应用场景中,可以合并来自EEG数据流的实时情绪分类。


实验步骤:

       主要使用EEG传感器数据流进行实时情绪分类的工作过程。如图3所示。实验研究分为以下步骤:

第一步:

       数据集预处理和数据重排:为了使EEG信号成为可能,我们考虑了预处理的DEAP数据。DEAP数据以3D矩阵格式存储,因此为了更好地理解和可读性,我们将EEG信号重新排列为一维(1D)矩阵格式,如下所示:

       [participant, video, channel no, channel data, valence class, arousal class]

       在这个实验中,我们使用EEG数据对情绪进行分类,如高/低情绪和觉醒。因此,在对DEAP数据集中的效价和觉醒分数进行处理时,会自动进行缩放。例如:如果价态大于或等于5,则该类别为高价(即1);否则,该类为低价(即0)。对于唤醒类标签也进行了类似的缩放。

第二步:

       信号模拟:在脑电图模拟中,我们考虑了每个参与者60秒的时间窗口。60秒时间获胜的原因是视频长度为60秒,在DEAP数据中,相应的视频可以使用情感标签。我们认为,每个参与者一次观看一个视频,相应参与者的EEG信号流不断出现。数据流速率为2 Mb/60 s。流模拟系统是使用WebSockets开发的,其中连续的EEG数据流从客户端传输到服务器,服务器正在处理这些数据流以进行实时情绪分类。

第三步:

       从脑电信号流中提取特征:在我们的实验中,使用每个子带的小波系数从每个通道的脑电信号流中提取特征。提取的重要特征是小波能量、小波能量比和小波熵。在我们的实验中,我们使用Daubechies小波和近似最优小波Daubechies 4(Db4)小波基作为小波基函数,将脑电信号分解为五个级别。

第四步:

       情绪分类模型:对于来自EEG流的情绪分类,我们使用逻辑回归模型进行高/低效价和觉醒分类。

第五步:

       模型测试和训练:使用随机梯度下降算法(算法1)在增量学习中训练逻辑回归模型。之所以使用中间测试-然后训练方法,是因为该技术不需要测试集的单独内存,并最大限度地利用了可用数据;分类器的测试和训练性能可以通过每个示例的最详细的可能分辨率进行检查。这意味着,在将模型用于训练之前,可以使用每个单独的示例来测试模型,并由此更新精度、FM分数和混淆矩阵。因此,该模型总是在从未见过的例子上进行测试。在交织测试和训练的初始阶段(对于第一个数据元组),模型不会返回任何信息,因为它不知道数据,因此精度和F1分数将为零。然后,通过看到更多的数据元组,精确度和F1分数将逐渐提高。对于每个EEG信号流,模型训练一次(即历元为1),因为在流中,模型可以看到一次数据。


参数设置

1.  机器配置为Ubuntu 18.04 64位操作系统,处理器核心为i7-7700HQ,RAM 16 Gb–2400 MHz,4Gb Nvidia GTX-1050

2.  SVM:对于SVM,C(正则化参数)设置为1.0,并按照规定使用径向基核(rbf)。

3.  MLP:对于MLP,使用一个包含20个神经元和乙状结肠激活功能的隐藏层。在学习率为0.001的情况下,采用随机梯度下降法对MLP进行优化。最大epoch设置为200。

3.  DT:对于DT,所有内容都设置为规定的默认值。

4.  RECS方法:在我们的方法中,SGD的学习率为0.05,在整个情绪分类中是固定的。为了设置学习率,我们使用RECS对一个受试者进行了周期学习率(CLR),其中我们将SGD的学习率从0变为1,步长增量为0.01。


和其他模型的比较:

论文和源码见个人主页:https://download.csdn.net/download/qq_45874683/85089303

(论文和源码)基于DEAP的实时脑电情绪分类系统

  • 1
    点赞
  • 15
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

脑电情绪识别

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值