Recognition Emotion Cause in Conversations 论文阅读笔记

这篇论文提出了识别对话中情感原因的新任务,定义了情感证据和情感原因的区别,构建了对话级数据集RECCON,并设定了两个子任务:因果跨度提取和因果情绪蕴含。通过对RoBERTa和SpanBERT等模型的实验,评估了模型在识别和理解情感原因的能力。
摘要由CSDN通过智能技术生成

Recognition Emotion Cause in Conversations 论文阅读笔记

1.第一遍阅读

1.1 标题

Recognition Emotion Cause in Conversations

识别对话中的情绪原因

1.2 Abstract(摘要)

1.解决了在对话中识别情绪原因的问题,定义了这个问题的两个新的子任务

2.提供了相应的对话级数据集RECCON,根据原因的来源定义不同的原因类型

3.提供了基于transformer的基线

1.3 Conclusion(结论)

已经解决了在对话中识别情感原因的问题,并引入了一个新的对话级数据集RECCON,包含超过1,126个对话(对偶对话)和10,600个话语因果跨度对。我们确定了各种情绪类型和关键挑战,使这项任务极具挑战性。此外,我们提出了两个子任务,并制定了基于transformer的强基线来处理这些子任务。

2.第二遍阅读

2.1 Introduction(介绍)

贡献如下

1.定义了相关的情感原因类型(情感原因类型)。

2.为这个任务描述了一个新的带注释的数据集,RECCON,包括行为和现实世界的二元对话(构建RECCON数据集)。

3.引入了两个需要复杂推理的具有挑战性的子任务,并建立了强大的基线来解决子任务(实验)。这些基线的性能超过了几种新引入的复杂神经方法,如ECPE-MLL[13]、RankCP[36]和ECPE-2D[12]。

2.2 Related Work(相关工作)

巴拉巴拉

2.3 Definition of the task(问题定义)

2.3.1 先区别emotion evidence和emotion cause的区别

Emotion evid

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值