Recognition Emotion Cause in Conversations 论文阅读笔记
1.第一遍阅读
1.1 标题
Recognition Emotion Cause in Conversations
识别对话中的情绪原因
1.2 Abstract(摘要)
1.解决了在对话中识别情绪原因的问题,定义了这个问题的两个新的子任务
2.提供了相应的对话级数据集RECCON,根据原因的来源定义不同的原因类型
3.提供了基于transformer的基线
1.3 Conclusion(结论)
已经解决了在对话中识别情感原因的问题,并引入了一个新的对话级数据集RECCON,包含超过1,126个对话(对偶对话)和10,600个话语因果跨度对。我们确定了各种情绪类型和关键挑战,使这项任务极具挑战性。此外,我们提出了两个子任务,并制定了基于transformer的强基线来处理这些子任务。
2.第二遍阅读
2.1 Introduction(介绍)
贡献如下
1.定义了相关的情感原因类型(情感原因类型)。
2.为这个任务描述了一个新的带注释的数据集,RECCON,包括行为和现实世界的二元对话(构建RECCON数据集)。
3.引入了两个需要复杂推理的具有挑战性的子任务,并建立了强大的基线来解决子任务(实验)。这些基线的性能超过了几种新引入的复杂神经方法,如ECPE-MLL[13]、RankCP[36]和ECPE-2D[12]。
2.2 Related Work(相关工作)
巴拉巴拉
2.3 Definition of the task(问题定义)
2.3.1 先区别emotion evidence和emotion cause的区别
Emotion evid