复变函数论9-调和函数2-泊松积分公式与狄利克雷问题1:泊松积分公式

本文介绍了泊松积分公式在复变函数论中的应用,特别是针对圆域内的调和函数。通过柯西积分公式推导得出泊松积分表达式,并阐述了其对调和函数和解析函数的性质。定理9.4指出,圆内调和且闭圆上连续的函数值可通过圆周上的积分表示,进一步推广了平均值公式。
摘要由CSDN通过智能技术生成

一、泊松积分公式

设函数 f ( z ) f(z) f(z) 在圆 K : ∣ z ∣ < R K:|z|<R K:z<R 内解析, 在闭圆 K ˉ : ∣ z ∣ ⩽ R \bar{K}:|z| \leqslant R Kˉ:zR上连续, 则对于 K K K 内任一点 z = r e i f z=r \mathrm{e}^{\mathrm{i} f} z=reif,
根据柯西积分公式, 有

f ( z ) = 1 2 π i ∫ ∣ ζ ∣ = R f ( ζ ) ζ − z   d ζ = 1 2 π ∫ 0 2 π f ( R e i θ ) R e i θ R e i θ − r e i φ d θ . \begin{aligned} f(z) & =\frac{1}{2 \pi \mathrm{i}} \int_{|\zeta|=R} \frac{f(\zeta)}{\zeta-z} \mathrm{~d} \zeta \\ & =\frac{1}{2 \pi} \int_{0}^{2 \pi} f\left(R \mathrm{e}^{\mathrm{i} \theta}\right) \frac{R \mathrm{e}^{\mathrm{i} \theta}}{R \mathrm{e}^{\mathrm{i} \theta}-r \mathrm{e}^{\mathrm{i} \varphi}} \mathrm{d} \theta . \end{aligned} f(z)=2πi1ζ=Rζzf(ζ) dζ=2π102πf(Reiθ)Reiθreiφ

  • 21
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值