机器学习聚类分析算法——python详细代码解析(sklearn)

聚类分析算法是一种非监督式学习算法,它旨在将数据集中的样本划分为若干个组或“簇”,使得同一个簇内的样本相似度较高,而不同簇之间的样本相似度较低。针对的是没有响应变量而仅有特征变量的数据集,其主要作用就是快速分类。虽然是非监督式学习算法,但聚类分析也有很多应用场景,比如电商平台系统对具有相似购买行为的用户进行聚类,针对划分好的客户类别,将某用户购买的产品在同一类别用户内进行推荐,实现精准促销;或者根据以往销售记录及其他特征对产品进行聚类,若某用户购买了一款产品,则继续向他推送同一类别的其他产品。我们讲解聚类分析算法的基本原理,并结合具体实例讲解该算法在Python中的实现与应用。

聚类分析方法:

划分聚类分析是一种将数据样本分配到预定义的、不重叠的组中的方法。它主要有两种形式:K均值聚类和K中位数聚类。

K均值聚类是一种流行的方法,它通过以下步骤实现:

  • K中位数聚类与K均值类似,但使用中位数作为聚类中心,这使得它对异常值更加鲁棒。
  • 在进行K均值聚类时,用户需要指定聚类的数量(K值)和参与聚类的特征变量(x维特征空间)。系统会根据这些特征变量将样本点分配到最近的聚类中心,形成初始的聚类。然后,通过迭代过程不断优化聚类中心的位置,直至满足停止条件。
  • K均值聚类的优势在于其计算效率高,适合处理大规模数据集。然而,它要求用户预先指定聚类的数量,这可能限制了其在探索性数据分析中的应用。此外,K均值聚类对初始聚类中心的选择敏感,可能需要多次运行以找到稳定的聚类结果。
  • 为了克服这些限制,可以采用一些策略,如使用K-Means++算法来初始化聚类中心,或者使用如肘部法则等方法来确定最佳的聚类数量。此外,对数据进行标准化处理也是提高聚类质量的重要步骤。

层次聚类分析也称为系统聚类分析。与划分聚类分析方法的原理不同,层次聚类分析的基本原理是根据选定的特征来识别相对均一的个案(变量)组,使用的算法是首先将每个个案(或变量)都视为一类,然后根据类与类之间的距离或相似程度将最近的类加以合并,再计算新类与其他类之间的相似程度,并选择最相似的加以合并,这样每合并一次就减少一类,不断继续这一过程,最终实现完全聚类,即把所有的观测样本汇集到一个组中。

在实际分析中常用到的一个层次聚类分析工具是树状图,那么,到底分成了多少类呢?这取决于研究的需要和实际的情况,需要用户加入自

### Python 数据分析中的聚类分析 #### 使用Python进行数据分析中的聚类分析概述 在Python中,多种库支持执行聚类分析,包括`scikit-learn`、`SciPy`等。这些工具提供了丰富的算法来适应不同的需求场景。 #### 库介绍 - **Scikit-Learn**: 提供了广泛使用的机器学习算法实现,其中包括多个聚类算法如K-Means、DBSCAN、OPTICS等[^1]。 - **SciPy**: 主要用于科学计算,也包含了层次聚类的功能,在处理特定类型的聚类问题上非常有用[^2]。 #### 实现案例 ##### OPTICS 空间数据聚类 对于具有复杂结构或多尺度特性的空间数据集,可以选择使用OPTICS算法: ```python import numpy as np from sklearn.cluster import OPTICS import matplotlib.pyplot as plt # 创建模拟空间数据 data = np.random.rand(100, 2) # 使用OPTICS算法进行聚类 optics = OPTICS(min_samples=5, xi=0.05, min_cluster_size=0.1) labels = optics.fit_predict(data) # 绘制聚类结果 plt.scatter(data[:, 0], data[:, 1], c=labels) plt.title('OPTICS Clustering') plt.show() ``` 这段代码展示了如何应用OPTICS来进行地理信息系统的空间数据聚类操作。 ##### 层次聚类——最短距离法 当目标是对少量样本实施简单直观的分组时,可以考虑采用层次聚类中最短距离的方法: ```python import matplotlib.pylab as plt import numpy as np import scipy.cluster.hierarchy as sch plt.rcParams['font.sans-serif']=['SimHei'] plt.rcParams['axes.unicode_minus']=False data = np.array([[1,2,5,9,13]]) Min = sch.linkage(data.T, method='single', metric='cityblock') P = sch.dendrogram(Min) plt.xlabel('类别标签') plt.ylabel('距离') plt.show() ``` 此部分说明了怎样运用SciPy包里的hierarchical clustering模块完成基本的层次聚类任务,并绘制相应的树状图表示结果。 ##### 文本聚类与主题提取 针对大规模文本集合,可借助于MiniBatchKMeans快速有效地将其划分为若干逻辑单元;同时还能进一步挖掘每一群体的主要话题倾向: ```python def K_cluster_analysis(K, X): from sklearn.cluster import MiniBatchKMeans from sklearn.metrics import calinski_harabasz_score from collections import Counter model = MiniBatchKMeans(n_clusters=K).fit(X) y_pred = model.predict(X) ch_index = calinski_harabasz_score(X.toarray(), y_pred) return model, y_pred, ch_index # 假设已经得到了最优的 Best_K 和 特征矩阵 x_train model, y_pred, ch_index = K_cluster_analysis(Best_K, x_train) word_features = vectorizer.get_feature_names_out() for i in range(Best_K): cluster_center_indices = model.cluster_centers_.argsort()[:, ::-1][i][:4] top_words_and_scores = [(word_features[j], model.cluster_centers_[i][j]) for j in cluster_center_indices] print(top_words_and_scores) ``` 上述脚本解释了一个完整的流程:从确定最佳簇数目到实际执行聚类过程再到最后的结果解析,特别是关于识别各个群集中最具代表性的几个关键字项[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值