Pytorch深度学习笔记(四)梯度向下算法

目录

(1)梯度向下算法思想

(2)模型公式

(3)代码实现

(4)优化算法:指数加权均值

(5)随机梯度下降


课程推荐:03.梯度下降算法_哔哩哔哩_bilibili

优化问题:求误差值函数最小的权重w

(1)梯度向下算法思想

在绝大多数的情况下,损失函数是很复杂的(比如逻辑回归),根本无法得到参数估计值的表达式。因此需要一种对大多数函数都适用的方法。这就引出了“梯度算法”。首先,梯度下降(Gradient Descent, GD),不是一个机器学习算法,而是一种基于搜索的最优化方法。梯度下降法通过导数告诉我们此时此刻某参数应该朝什么方向,以怎样的速度运动,能安全高效降低损失值,朝最小损失值靠拢

(2)模型公式

更新\omega公式: \omega = \omega-\alpha\frac{1}{N} \sum_{n=1}^{N}2\cdot x_{n}\cdot (x_{n}\cdot \omega -y_{n})                                                                   

注意:  \omega=\omega-\alpha\frac{\partial cost}{\partial \omega }

                                                  

\frac{\partial cost}{\partial \omega }=\frac{1}{N} \sum_{n=1}^{N}2\cdot x_{n}\cdot (x_{n}\cdot \omega -y_{n})\frac{\partial cost}{\partial \omega }为误差值函数的导数,也称梯度。\alpha为学习率 ,学习率为随机参数,尽量取较小的值。\omega为权重 。x_{n}为输入值,y_{n}为真值。

(3)代码实现

import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

# w初值猜测
w = 1.0

# 预测值函数
def forward(x):
    return x * w

# 求平均误差值
def cost(xs,ys):
    cost = 0
    for x, y in zip(xs, ys):
        # 求预测值
        y_pred = forward(x)
        # 求总误差值
        cost += (y_pred - y) ** 2
        return cost / len(xs)

# 平均导数值函数,也称梯度值函数
def gradient(xs, ys):
    grad = 0
    for x, y in zip(xs, ys):
        grad += 2 * x * (x * w - y)
        # 求梯度值
    return grad / len(xs)

epoch_list = []
cost_list = []

print("训练之前的预测值", 4, forward(4))
# 100轮的训练
for epoch in range(100):
    cost_val = cost(x_data, y_data)
    grad_val = gradient(x_data, y_data)
    # 更新w。0.01为学习率,Epoch为训练一次过程
    w -= 0.01 * grad_val
    print('Epoch=', epoch, 'w=', w, 'cost=', cost_val)
    # epoch,cost列表
    epoch_list.append(epoch)
    cost_list.append(cost_val)
print("训练之前的预测值", 4, forward(4))

plt.plot(epoch_list,cost_list)
plt.ylabel('cost')
plt.xlabel('epoch')
plt.show()

(4)优化算法:指数加权均值

指数加权均值(exponentially weighted averges)也叫指数加权移动平均,通过它可以来计算局部的平均值,来描述数值的变化趋势。可以使损失曲线变得更加平滑

 算法公式: c_{i}'=\beta c_{i}+\left ( 1-\beta \right )c_{i-1}'

c_{i}为优化前的损失值,c_{i}'优化后的损失值,\beta为某个权重。

(5)随机梯度下降

随机梯度下降:每一次更新只采用一个样本来计算梯度,并根据梯度对进行更新。因此可知,对于凸优化问题,每一次更新不能保证是朝着全局最优点前进,但是总体的方法仍然是朝着全局最优的方向前进。相对于批量梯度下降,这种方法单次更新时间更快、存储要求小,且非常适合于增量式更新(假设新的样本源源不断的加入)。对于非凸最优化问题,这种方法通常能够更快的收敛到一个局部最优解。

 随机梯度下降: \omega=\omega\alpha\frac{\partial loss}{\partial \omega },更新w的公式每次减去的值由整体样本的梯度变为随机一个样本的梯度。

 代码实现:

import matplotlib.pyplot as plt

x_data = [1.0, 2.0, 3.0]
y_data = [2.0, 4.0, 6.0]

# w初值猜测
w = 1.0

# 预测值函数
def forward(x):
    return x * w

# 求误差值
def loss(x,y):
    y_pred = forward(x)
    loss = (y_pred - y) ** 2
    return loss

# 随机梯度值函数
def gradient(x, y):
    # 求梯度值
    return 2 * x * (x * w - y)

epoch_list = []
loss_list = []

print("训练之前的预测值", 4, forward(4))
# 100轮的训练
for epoch in range(100):
    for x,y in zip(x_data,y_data):
        # (1)获取梯度
        grad = gradient(x, y)
        # (2)更新权重w
        w = w - 0.01*grad
        print("\tgrad", x, y, grad)
        # (3)获取误差值
        l = loss(x, y)
        # loss,epoch列表
        loss_list.append(l)
        epoch_list.append(epoch)
    print("progress:", epoch,"w=", w, l)

print("训练之前的预测值", 4, forward(4))

plt.plot(epoch_list,loss_list)
plt.ylabel('loss')
plt.xlabel('epoch')
plt.show()

注意:局部最优与鞍点问题,鞍点:梯度为0的点 

非凸函数


 

  • 4
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向岸看

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值