基于概率距离削减法、蒙特卡洛削减法的风光场景不确定性削减(Matlab代码实现)

 💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

目录

💥1 概述

一、研究背景

二、研究目的

三、研究方法

四、研究结果

五、研究展望

📚2 运行结果

2.1 风电场景削减

 2.2 光伏场景削减

🎉3 参考文献

🌈4 Matlab代码实现


💥1 概述

  以风电和光伏为代表的可再生能源出力具有随机性、间歇性、波动性等特点,在未来高比例可再生能源电力系统中,其大规模并网将给电网的安全、稳定运行带来挑战。为了研究高比例可再生能源背景下电力系统规划、运行、调度等优化问题,首先需要精准刻画风电、光伏出力的随机性与波动性特征,并且解决大规模时序数据对优化程序所造成时间复杂度较高的问题,因此需要对风电、光伏出力场景进行削减以达到精简数据、减少计算量的目的。风电、光伏出力随着时间的变化呈现一定的季节或日周期性·。因此,可以对风、光出力进行场景分析,将出力的不确定性转化为确定性场景,为后续电力系统规划、运行、调度等优化问题提供数据基础。
目前场景分析方法有三类∶时序模拟法、典型日法与场景聚类法。时序模拟法如文献采用蒙特卡洛法,考虑风电处理特性,模拟了全年的风电、负荷时序场景。典型日法将某一日的出力特性作为典型场景,文献以全年负荷峰谷差最大的一天作为典型日用于含风电全年电力平衡计算,显然不能体现风电的出力特性。场景聚类法通过将具有一定相似度的曲线聚为一类,例如文献采用k-means对全年风电、光伏、负荷数据进行聚类用于电力系统中长期规划。目前较为常用的是场景聚类法,因其结果能够准确体现场景特征,且计算效率较高。

一、研究背景

随着全球对清洁能源的需求日益增长,风光发电在电力系统中的占比不断提高。然而,风光发电的出力具有显著的随机性和间歇性,其预测误差较大,给电力系统的安全稳定运行带来了巨大挑战。准确预测风光发电出力并有效削减其场景不确定性是提高电力系统调度效率和可靠性的关键。

二、研究目的

研究基于概率距离削减法(Probability Distance Reduction,PDR)和蒙特卡罗削减法(Monte Carlo Reduction,MCR)的风光场景不确定性削减方法,旨在提高电力系统对风光发电出力的预测精度和调度效率。

三、研究方法

  1. 概率距离削减法(PDR)

    • 原理:概率距离削减法是一种基于概率度量和距离度量的场景削减方法。其核心思想是根据场景的概率分布和场景之间的距离,选择具有代表性的场景,从而减少场景数量。

    • 步骤

      1. 利用蒙特卡罗模拟或其他方法生成大量的初始风光发电出力场景集。
      2. 计算每个场景的概率密度,通常采用核密度估计方法进行概率密度估计。
      3. 计算场景之间的距离,常用的距离度量包括欧式距离、马氏距离等。
      4. 根据场景的概率和距离,选择具有代表性的场景。例如,可以根据概率和距离的加权和选择场景,或者采用聚类分析的方法选择场景。
      5. 得到削减后的风光发电出力场景集。
  2. 蒙特卡洛削减法(MCR)

    • 原理:蒙特卡洛削减法是一种基于重要性抽样的场景削减方法。其核心思想是根据场景的权重进行抽样,选择具有较高权重的场景,从而减少场景数量。

    • 步骤

      1. 同样利用蒙特卡罗模拟或其他方法生成大量的初始风光发电出力场景集。
      2. 计算每个场景的权重,权重可以根据场景的概率密度或其他指标计算。
      3. 根据场景的权重进行重要性抽样,选择具有较高权重的场景。
      4. 得到削减后的风光发电出力场景集。

四、研究结果

研究结果表明,概率距离削减法和蒙特卡洛削减法都能有效削减场景数量,提高计算效率。但两者的削减效果和计算效率存在差异:

  • 概率距离削减法在精度和计算效率方面取得了较好的平衡。
  • 蒙特卡洛削减法的计算效率更高,但精度可能略低。

五、研究展望

未来的研究可以探索更有效的概率距离度量和权重计算方法,以提高削减精度。同时,研究结合多种削减方法的混合算法,以获得更好的削减效果。此外,将场景削减方法应用于实际电力系统调度优化,验证其有效性,并研究考虑风光发电出力预测误差的不确定性,提高场景削减的鲁棒性,也是未来的研究方向。

📚2 运行结果

2.1 风电场景削减

 

 2.2 光伏场景削减

 

 展望与思考:

随着能源需求增长与化石燃料资源枯竭的矛盾日益突出,大规模发展低碳、清洁的新能源是我国实现能源转型和应对全球气候变化的重要措施之一。但风、光固有的不确定性也对电力系统稳定运行提出了巨大挑战,由于电力系统消纳能力不足造成了严重的弃风、弃光。因此,研究大规模新能源接入情况下的电力系统电源规划方法具有重要意义。为从根本上解决该问题,需要在规划阶段同时考虑风光不确定性和电力系统运行条件。一方面要准确描述风光真实分布特性,另一方面要提供多能源电力系统电源规划方案并能高效准确模拟各电源并网运行情况。


利用可再生能源发电的分布式电源由于具污染﹑高效率、节约输变电投资等优势,近年来
快速发展。但分布式电源容量小、数量大、分散等特点,也导致单机接入电网成本高﹑管理困难。微网2和是拟电)足口月U用T我 由厂( virtual并网问题的两种王安 .月。出抗方式和能源power plant ,V.PP)龙l多个小电源打包,输出管理整合各类分布式电源,将多个小电源打包,
车相对稳定的较大出力。与微网相比,虚拟电偏重从上到下的管理与控制﹐从对外呈现的功有艺点效果看,更类似传统电厂。为了保证虚拟电厂运行,虚拟电厂可以签V尖以门元协议。实际上,可再生能源发电一方面具有出力不确定性,一方面有对可再生能源发电倾斜的调度规则,甚至可再生能源发电吸纳率也是各电网运行绩效的重要指标﹐因此配电公司和虚拟电厂之间可以通过有效的合作,例如合理安排水电出力时段、弃风量等,降低不确定性对并网的影响,减少配电公司购电成本,增加虚拟电厂收入,引导可再生能源发电提高预测精度。因此,重点分析虚拟电厂与配电公司的合作可行性,在以场景分析法处理风光出力不确定性的基础上,构建了虚拟电厂单独调度、多虚拟电厂协同调度以及虚拟电厂/配电公司联合优化三种模型,基于合作博弈理论定量分析虚拟电厂/配电公司合作空间和利益分配方案。

🎉3 参考文献

部分理论来源于网络,如有侵权请联系删除。

[1]白斌,韩明亮,林江,孙伟卿.含风电和光伏的可再生能源场景削减方法[J].电力系统保护与控制,2021,49(15):141-149.DOI:10.19783/j.cnki.pspc.201224.

[2]董文略,王群,杨莉.含风光水的虚拟电厂与配电公司协调调度模型[J].电力系统自动化,2015,39(09):75-81+207.

🌈4 Matlab代码实现

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值