💥💥💞💞欢迎来到本博客❤️❤️💥💥
🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。
⛳️座右铭:行百里者,半于九十。
📋📋📋本文目录如下:🎁🎁🎁
目录
💥1 概述
风电、光伏与储能技术的互补调度运行是当前可再生能源研究的重点之一。随着全球能源结构的逐渐转型,风电和光伏发电作为清洁能源在能源供给中占据越来越重要的地位。然而,它们作为主要的可再生能源,存在着供电不稳定、难以预测和存储等挑战。储能技术的加入,尤其是电池储能和废弃矿井小型抽水蓄能等,能够在风电和光伏发电产能过剩时存储能量,在需求高峰期释放能量,从而提高了能源的利用效率和电网的调度灵活性。
风电、光伏与储能互补调度运行研究综述
一、风电与光伏发电的波动性及对电网的影响
-
反调峰特性与出力波动
风电和光伏的出力具有显著的“反调峰”特性。风电出力在夜间达到高峰(凌晨前后),而白天用电高峰时出力较低,日波动幅度可达装机容量的80%;光伏则在正午达到峰值,傍晚出力降为0,日内波动幅度达100%。这种特性导致电网面临15%-30%的反调峰压力,尤其在极热、极寒或连续阴雨天气下,调节需求进一步增大。 -
气象依赖性与预测难度
两者的出力高度依赖风速、光照等气象因素,但气象条件难以长期精准预测,导致出力预测误差较大。例如,风电受天气突变影响可能出现功率骤降,光伏则易受云层遮挡导致出力快速波动。这种不可预测性增加了电网调度难度,需依赖储能系统平抑波动。
二、储能技术的互补特性与应用场景
-
电池储能系统(BESS)
- 技术特点:具备高效性(能量转换效率>90%)、灵活性(毫秒级响应)、精确控制能力及环保性。模块化设计支持规模化扩展(可达20MW以上),且具备双向调节能力(充电为负荷,放电为电源)。
- 应用场景:适用于短时高频调节(如调频、平滑出力“毛刺”)、分布式微电网及应对突发性功率波动。例如,南非某光伏电站通过电池储能将15分钟波动率从16.12%降至6.95%。
-
废弃矿井抽水蓄能(UPSH)
- 技术原理:利用矿井塌陷区作为上水库,井下巷道作为下水库,通过水头差实现势能-电能转换。相比传统抽水蓄能,UPSH可节省土地资源,缩短建设周期。
- 容量与经济性:装机规模通常较小(受巷道空间限制),但能量转换效率达70%-85%,单位千瓦投资成本约1500-2500元,度电成本低于电化学储能(0.93元/kWh vs 锂电池的2.0元/kWh)。
- 应用场景:适合大规模调峰(日/周调节)、黑启动及辅助火电机组深度调峰。例如,河北省滦平抽蓄项目利用铁矿矿坑作为下水库,实现区域电网的峰谷平衡。
三、多能互补调度的优化模型与协同机制
-
双层优化模型
- 上层模型:以净负荷方差最小和清洁能源发电量最大为目标,协调风光水储出力。例如,通过储能“能量时移”将午间光伏过剩电能转移至晚高峰。
- 下层模型:以火电运行成本最小为目标,在净负荷曲线约束下优化火电机组启停及出力分配,减少爬坡次数。该模型通过分层处理降低复杂度,并采用混合整数规划或遗传算法求解。
-
协同调度策略
- 时间尺度分工:抽水蓄能负责日/周级调峰(如夜间蓄水、日间发电),电池储能应对分钟级波动(如风光出力骤降时的快速补电)。
- 经济性匹配:抽水蓄能用于低价值时段储能(如谷电),电池储能在高电价时段放电以最大化收益。例如,某6节点系统通过协调两者,弃风率降低12%,火电调峰成本下降18%。
-
鲁棒调度与风险控制
引入鲁棒随机理论处理风光出力不确定性,通过设置鲁棒系数平衡经济效益与运行风险。例如,某9.6MW风电+6.5MW光伏系统在鲁棒系数0.8时,运营风险降低40%。
四、典型案例分析
案例1:风光储输示范工程(中国张北)
- 系统构成:风电100MW、光伏40MW、储能20MW(含锂电池和超级电容)。
- 运行效果:储能平滑出力波动(15分钟波动率<7%),实现7种运行模式切换(如风光储联合、储能独立调频),提升并网电能质量。
案例2:废弃矿井抽蓄+电池混合储能(贵州某矿区)
- 技术方案:利用矿井巷道建设50MW抽蓄电站,配套10MW/40MWh锂电池。
- 协同机制:抽蓄负责日间调峰,电池应对瞬时可再生能源波动。结果显示,系统调峰能力提升30%,度电成本降低22%。
五、经济性对比与政策支持
-
全生命周期成本
储能类型 初始投资(元/kW) 循环次数 度电成本(元/kWh) 抽水蓄能 3500-4500 >16,000 0.93 锂电池储能 6000-8000 3000-5000 2.0-2.5 废弃矿井抽蓄 2000-3000 >10,000 0.85-1.2 (数据来源:) -
政策支持机制
- 财政激励:风光储项目可获30%-50%的初始投资补贴,部分省份对UPSH提供额外土地优惠。
- 市场机制:可再生能源配额制+绿证交易,推动储能参与电力辅助服务市场。例如,云南省通过分时电价政策使UPSH年静态效益达54.3亿元。
六、未来挑战与研究方向
- 技术瓶颈:UPSH需解决地下空间改造安全性(如岩层渗漏、水化学腐蚀);电池储能需突破循环寿命限制(如固态电池研发)。
- 模型优化:需开发更高效率的调度算法(如量子优化)以处理多能系统的高维非线性约束。
- 政策协同:需建立跨区域补偿机制,促进抽蓄与电池储能的容量租赁和共享。
结论
风电、光伏与储能的互补调度是实现高比例可再生能源并网的关键路径。通过电池储能的快速响应与废弃矿井抽蓄的大容量调峰协同,结合双层优化模型与政策支持,可有效平抑源荷波动、降低系统运行成本。未来需进一步突破技术瓶颈、完善市场机制,推动多能互补系统向更高效、经济的方向发展。
📚2 运行结果
部分代码:
n=24; % 一天24h
[C,C_p,C_c]=price(n); % 确定分时电价,调用price函数,C_p为抽水费用、C_c为电池充电费用
C=C'; % 上网分时电价
C_p=C_p'; % 抽蓄抽水电价
C_c=C_c'; % 电池运行成本
T=1:n;
t=1; % 尺度1h
SOC_0=0.5; % SOC初始荷电状态 赋值
eta_p=0.87; % 水泵抽水效率
eta_h=0.85; % 水力发电效率
eta_c=0.9; % 电池 充电效率
eta_d=0.9; % 电池 放电效率
Emax_0=100;Emin=0; % 电池 最大、最小容量MWh
P_cmax=100; P_cmin=0; % 电池 充放电 最大/小功率
P_dmax=100;P_dmin=0;
SOCmin=0.2;SOCmax=0.8; % 电池 荷电状态 上下限
xgma=0.25/30/24; % 电池每小时自放电率 20~30%/月
yibuxil_lack=100; % 缺电惩罚系数 元/MWh
yibuxil_DL=30; % 弃电惩罚系数 元/MWh
M_co2=0.877; % 火电厂发单位电量产生的CO2量 tco2/MWh
k_ps_h=46; % 抽蓄发电运行成本 元/MWh
k_ba_d=28.7; % 电池发电运行成本 元/MWh
P_hmax=150;P_hmin=0; % 抽蓄最大、最小 发电 功率 MW
P_pmax=150;P_pmin=0; % 抽蓄最大、最小 抽水 功率 MW
P_pps_r=150; % 抽蓄额定功率
E_max_0=300;E_min=0; % 水库储能
E_0=150; % 水库初始储能量 赋值
%% 开始优化 抽蓄+电池
% 申明变量
Chrom=sdpvar(1,10*n); % 整形 intvar 实形 sdpvar
%P_w P_p P_h E P_DL P_c P_d SOC P_lack P_pv
% 1 2 3 4 5 6 7 8 9 10
Chrom_E=sdpvar(1,2); % 抽蓄和电池容量
I_q=binvar(1,n); %抽蓄启动抽水 0/1
I_h=binvar(1,n); %抽蓄启动发电 0/1
% 目标函数
f=sum(C.*Chrom(1,1:n)+C.*Chrom(1,(2*n+1:3*n))+C.*Chrom(1,(6*n+1:7*n))+C.*Chrom(1,(9*n+1:10*n))-C_p.*Chrom(1,(n+1:2*n))-C_c.*Chrom(1,(5*n+1:6*n))-yibuxil_lack*Chrom(1,(8*n+1:9*n))-yibuxil_DL*Chrom(1,(4*n+1:5*n))-k_ps_h*Chrom(1,(2*n+1:3*n))-k_ba_d*Chrom(1,(6*n+1:7*n)));
% 约束条件
F=[];
P_w = Chrom(1,1:n);
P_p = Chrom(1,(n+1:2*n));
P_h = Chrom(1,(2*n+1:3*n));
E = Chrom(1,(3*n+1:4*n));
P_DL =Chrom(1,(4*n+1:5*n));
P_c = Chrom(1,(5*n+1:6*n));
P_d = Chrom(1,(6*n+1:7*n));
SOC = Chrom(1,(7*n+1:8*n));
P_lack = Chrom(1,(8*n+1:9*n));
P_pv =Chrom(1,(9*n+1:10*n));
E_max=Chrom_E(1,1); % 申明 水库最大储能量 便于-混合储能-计算
Emax= Chrom_E(1,2); % 申明 电池最大容量 便于-混合储能-计算
% 得出 混合储能量 的上下界
P_net_max = P_load-P_v;
P_pc=zeros(1,n);P_hd=zeros(1,n);% 生成存储空间
for im=1:n
if P_net_max(im) >= 0
P_pc(im)=P_net_max(im); % 最大充电 上限
end
if P_net_max(im) < 0
P_hd(im)=P_net_max(im); % 最大发电 上限
end
end
for in=1:n
F=[F P_w(1,in)+P_pv(1,in)+P_h(1,in)+P_d(1,in)+P_lack(1,in)==P_load(in)]; % 抽蓄+电池+风电+光伏上网,功率平衡限制约束
F=[F 0<=P_pv(1,in)<=P_pv1(1,in)]; % 光伏上网限制约束
F=[F 0<=P_w(1,in)<=P_v(1,in)]; % 风电上网限制约束
F=[F P_p(1,in)*P_h(1,in)==0]; % 抽蓄抽水-发电 不同时发生约束
F=[F P_c(1,in)*P_d(1,in)==0]; % 电池充-放电 不同时发生约束
F=[F (E_max_0<=E_max<=E_max_0)]; % 赋值 - 水库 最大储能量
F=[F (Emax_0<=Emax<=Emax_0)]; % 赋值 - 电池 最大储能量
F=[F E_0<=E(1)<=E_0]; % 赋值 - 水库 初始储能,最大值现为10MWh
E(in+1)=E(in)+t*(eta_p*P_p(1,in)-P_h(1,in)/eta_h); % 水库 储能变化
F=[F E_min<=E(in+1)<=E_max]; % 水库 储能量限制约束
F=[F SOC_0<=SOC(1)<=SOC_0]; % 赋值 - 电池荷电状态 初始值 E_0=0.5
SOC(in+1)=SOC(in)*(1-xgma)+t*(eta_c*P_c(1,in)/Emax)-t*P_d(1,in)/Emax/eta_d; % 电池荷电状态 约束
F=[F SOCmin<=SOC(1,in+1)<=SOCmax]; % 电池 储能量限制约束
F=[F P_cmin<=P_c(1,in)<=min(P_cmax,Emax*(SOCmax-SOC(in)*(1-xgma))/t/eta_c)]; % 电池 充电功率限制 #--- m ---#
F=[F P_dmin<=P_d(1,in)<=min(P_dmax,(SOC(in)*(1-xgma)-SOCmin)*eta_d*Emax/t)]; % 电池 放电功率限制 #--- p ---#
F=[F P_pmin<=P_p(1,in)<=min(P_pmax,(E_max-E(in))/t/eta_p)]; % 抽蓄 抽水约束 #--- n ---#
F=[F P_hmin<=P_h(1,in)<=min(P_hmax,E(in)*eta_h/t)]; % 抽蓄 发电约束 #--- q ---#
F=[F P_w(1,in)+P_pv(1,in)+P_p(1,in)+P_c(1,in)+P_DL(1,in)==P_v(1,in)+P_pv1(1,in)]; % 能量守恒约束
F=[F 0<=P_DL(1,in)]; % 功率舍弃量 约束
F=[F 0<=P_lack(1,in)]; % 缺口量 约束
end
% 运算求解
output=solvesdp(F,-f);
z=double(f);
P_w=double(P_w);
P_p=double(P_p);P_h=double(P_h);E=double(E); % 抽蓄 参数
P_c=double(P_c);P_d=double(P_d);SOC=double(SOC); % 电池 参数
P_pv=double(P_pv);
P_DL=double(P_DL); % 弃电值
P_lack=double(P_lack); % 缺口值
E_max=double(E_max);Emax=double(Emax); % 抽蓄、电池最大容量
P_i=P_w+P_pv+P_h+P_d;%联合系统上网功率
🎉3 参考文献
文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。
[1]潘文霞,范永威,杨威.风-水电联合优化运行分析[J].太阳能学报,2008,(01):80-84.
[2]梁喆,李梅,周孟然,等.面向光伏消纳的光伏-废弃矿井抽蓄-蓄电池联合发电系统优化调度策略[J].科技导报,2021,39(13):52-58.