《具体数学》部分习题解答4

本文详细解答了《具体数学》一书中4.1至4.54节的部分习题,涉及算法、数论、欧几里得数、费马定理等多个主题。内容涵盖素数、同余、欧几里得算法、合数证明、无平方因子数、欧几里得数的性质、河内塔问题以及中国剩余定理等概念。通过对习题的深入探讨,有助于读者深化对基础数学和算法的理解。
摘要由CSDN通过智能技术生成

4.1

1 ≤ k ≤ 6 1 \le k \le 6 1k6,恰有 k k k 个因子的最小正整数是什么?

1 2 3 4 5 6
1 2 4 6 16 12

4.2

证明 g c d ( m , n ) ⋅ l c m ( m , n ) = m ⋅ n gcd(m,n) \cdot lcm(m,n) = m \cdot n gcd(m,n)lcm(m,n)=mn,并在 n   m o d   m ≠ 0 n \bmod m \neq 0 nmodm=0时利用这个恒等式,从而用 l c m ( n   m o d   m , m ) lcm(n \bmod m , m) lcm(nmodm,m) 表示出 l c m ( m , n ) . lcm(m,n). lcm(m,n).

在这里插入图片描述

4.3

π ( x ) \pi(x) π(x) 是不超过 x x x 的素数个数。证明或推翻:
π ( x ) − π ( x − 1 ) = [ x 是 素 数 ] . \pi(x) - \pi(x-1) = [x 是素数]. π(x)π(x1)=[x].

如果 x x x 是整数,这显然正确
x x x 不是整数,可以改为: π ( x ) − π ( x − 1 ) = [ ⌊ x ⌋ 是 素 数 ] . \pi(x) - \pi(x-1) = [\lfloor x \rfloor 是素数]. π(x)π(x1)=[x].

4.4

如果 Stern-Brocot 构造是从五个分数 ( 0 1 , 1 0 , 0 − 1 , − 1 0 , 0 1 ) (\frac{0}{1} , \frac{1}{0} , \frac{0}{-1} , \frac{-1}{0} , \frac{0}{1}) (10,01,10,01,10) 而不是从 ( 0 1 , 1 0 ) (\frac{0}{1} , \frac{1}{0}) (10,01) 出发的,将会发生什么?

( 1 0 , 0 − 1 ) (\frac{1}{0} , \frac{0}{-1}) (01,10) 中的每个数相当于把 ( 0 1 , 1 0 ) (\frac{0}{1} , \frac{1}{0}) (10,01) 中对应的数分子分母颠倒,再乘以 (-1) ;同理,在 ( 0 − 1 , − 1 0 ) (\frac{0}{-1} , \frac{-1}{0}) (10,01) 中的每个数相当于把 ( 1 0 , 0 − 1 ) (\frac{1}{0} , \frac{0}{-1}) (01,10) 中对应的数分子分母颠倒,再乘以 (-1) … \dots

4.5

L L L R R R 是如下的 2×2 矩阵时,求 L k L^k Lk R k R^k Rk 的简单公式。
L = [ 1 1 0 1 ] R = [ 1 0 1 1 ] L = \begin{bmatrix} 1 & 1 \\ 0 & 1 \end{bmatrix} \quad R = \begin{bmatrix} 1 & 0 \\ 1 & 1 \end{bmatrix} \\[12pt] L=[1011]R=[1101]

L k = [ 1 k 0 1 ] R k = [ 1 0 k 1 ] L^k = \begin{bmatrix} 1 & k \\ 0 & 1 \end{bmatrix} \\[12pt] R^k = \begin{bmatrix} 1 & 0 \\ k & 1 \end{bmatrix} Lk=[10k1]Rk=[1k01]

4.6

a ≡ b ( m o d 0 ) a \equiv b \pmod{0} ab(mod0) 的含义是什么?

a ≡ b ( m o d 0 ) ⇔ a   m o d   0 = b   m o d   0 ⇔ a = b a \equiv b \pmod{0} \Leftrightarrow a \bmod 0 = b \bmod 0 \\ \Leftrightarrow a = b ab(mod0)amod0=bmod0a=b

4.7

十个标号 1~10 的人如同在约瑟夫问题中那样排成一个圆圈,每隔 m − 1 m-1 m1 个人处死一人。( m m m 的值可以比 10 大得多。)证明:对任何 k k k ,前三个死去的人不可能是 10,k 和 k+1 (依照这个次序)。

第 一 个 死 去 的 人 是 10 ⇔ m   m o d   10 = 0 第 二 个 死 去 的 人 是 k ⇔ m   m o d   9 = k 第 三 个 死 去 的 人 是 k + 1 ⇔ m   m o d   8 = 1 这 是 不 可 能 的 , 因 为 m   m o d   10 = 0 意 味 着 m 是 偶 数 , 而 m   m o d   8 = 1 意 味 着 m 是 奇 数 , 不 存 在 这 样 的 m 。 第一个死去的人是 10 \Leftrightarrow m \bmod 10 = 0 \\ 第二个死去的人是 k \Leftrightarrow m \bmod 9 = k \\ 第三个死去的人是 k+1 \Leftrightarrow m \bmod 8 = 1 \\ 这是不可能的,因为 m \bmod 10 = 0 意味着 m 是偶数,\\ 而 m \bmod 8 = 1 意味着 m 是奇数,不存在这样的m。 10mmod10=0kmmod9=kk+1mmod8=1mmod10=0mmmod8=1mm

4.8

正文中考虑的剩余系 ( x   m o d   3   ,   x   m o d   5 ) (x \bmod{3} \ , \ x \bmod{5}) (xmod3 , xmod5) 有如下令人不解的性质:13 对应 (1,3) ,它看起来几乎是相同的。说明怎样求出所有这种巧合的例子,而不用把 15 对剩余全都计算出来。换句话说,就是求同余式:
10 x + y ≡ x ( m o d 3 )   , 10 x + y ≡ y ( m o d 5 ) 10x + y \equiv x \pmod{3} \ , \quad 10x + y \equiv y \pmod{5} 10x+yx(mod3) ,10x+yy(mod5)
所有相关的解。提示:利用事实 10 u + 6 v ≡ u ( m o d 3 ) 10u + 6v \equiv u \pmod{3} 10u+6vu(mod3) 以及 10 u + 6 v ≡ v ( m o d 5 ) 10u + 6v \equiv v \pmod{5} 10u+6vv(mod5).

已 知 : { 10 x + 6 y ≡ x ( m o d 3 ) 10 x + 6 y ≡ y ( m o d 5 ) 求 解 : { 10 x + y ≡ 10 x + 6 y ( m o d 3 ) 10 x + y ≡ 10 x + 6 y ( m o d 5 ) ⇒ 10 x + y ≡ 10 x + 6 y ( m o d 15 ) ⇒ 5 y ≡ 0 ( m o d 15 ) ⇒ y ≡ 0 ( m o d 3 ) 考 虑 到 该 剩 余 系 , 我 们 有 : { 10 x + y < 15 x < 3 y < 5 因 此 : x = 0 或 者 1   ;   y = 0 或 者 3 已知: \begin{cases} 10x + 6y \equiv x \pmod{3} \\ 10x + 6y \equiv y \pmod{5} \end{cases} \\ 求解: \begin{cases} 10x + y \equiv 10x + 6y \pmod{3} \\ 10x + y \equiv 10x + 6y \pmod{5} \end{cases} \\ \Rightarrow 10x + y \equiv 10x + 6y \pmod{15} \\ \Rightarrow 5y \equiv 0 \pmod{15} \\ \Rightarrow y \equiv 0 \pmod{3} \\ 考虑到该剩余系,我们有: \begin{cases} 10x + y < 15 \\ x < 3 \\ y < 5 \end{cases} \\ 因此: x = 0 或者 1 \ ; \ y = 0 或者 3 { 10x+6yx(mod3)10x+6yy(mod5){ 10x+y10x+6y(mod3)10x+y10x+6y(mod5)10x+y10x+6y(mod15)5y0(mod15)y0(mod3)10x+y<15x<3y<5x=01 ; y=03

4.9

证明 ( 3 77 − 1 ) / 2 (3^{77} - 1) / 2 (3771)/2 是奇的合数。提示: 3 77   m o d   4 3^{77}\bmod 4 377mod4 等于什么?

3 ≡ − 1 ( m o d 4 ) ⇒ 3 77 ≡ ( − 1 ) 77 ( m o d 4 ) ∵ ( − 1 )   m o d   4 = 3 ∴ 3 77   m o d   4 = 3 ⇒ 3 77 − 1 2   是 奇 数 或 者 用 二 项 式 定 理 证 明 : 3 77 = ( 1 + 2 ) 77 = ∑ k = 0 77 ( 77 k ) 2 k = 1 + 2 ( 77 1 ) + ∑ k = 2 77 ( 77 k ) 2 k ⇒ 3 77 − 1 2 = 77 + ∑ k = 2 77 ( 77 k ) 2 k − 1   是 奇 数 ∵ 77 = 7 × 11 ∴ 3 77 − 1 3 7 − 1 = 3 70 + 3 63 + ⋯ + 1 3 77 − 1 3 11 − 1 = 3 66 + 3 55 + ⋯ + 1 ⇒ 3 77 − 1 2   是 合 数 3 \equiv -1 \pmod{4} \Rightarrow 3^{77} \equiv (-1)^{77} \pmod{4} \\ \because (-1) \bmod 4 = 3 \\ \therefore 3^{77} \bmod 4 = 3 \\ \Rightarrow \frac{3^{77} - 1}{2} \ 是奇数 \\[12pt] 或者用二项式定理证明:\\ 3^{77} = (1+2)^{77} = \sum_{k=0}^{77} \binom{77}{k} 2^k = 1 + 2 \binom{77}{1} + \sum_{k=2}^{77} \binom{77}{k} 2^k \\ \Rightarrow \frac{3^{77} - 1}{2} = 77 + \sum_{k=2}^{77} \binom{77}{k} 2^{k-1} \ 是奇数 \\[16pt] \because 77 = 7 \times 11 \\ \therefore \frac{3^{77}-1}{3^7-1} = 3^{70} + 3^{63} + \cdots + 1 \\ \frac{3^{77}-1}{3^{11}-1} = 3^{66} + 3^{55} + \cdots + 1 \\ \Rightarrow \frac{3^{77} - 1}{2} \ 是合数 31(mod4)377</

  • 5
    点赞
  • 21
    收藏
    觉得还不错? 一键收藏
  • 8
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 8
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值