题目地址:
https://www.acwing.com/problem/content/1171/
幼儿园里有 n n n个小朋友,老师现在想要给这些小朋友们分配糖果,要求每个小朋友都要分到糖果。但是小朋友们也有嫉妒心,总是会提出一些要求,比如小明不希望小红分到的糖果比他的多,于是在分配糖果的时候,老师需要满足小朋友们的 K K K个要求。幼儿园的糖果总是有限的,老师想知道他至少需要准备多少个糖果,才能使得每个小朋友都能够分到糖果,并且满足小朋友们所有的要求。
输入格式:
输入的第一行是两个整数
n
,
K
n,K
n,K。接下来
K
K
K行,表示分配糖果时需要满足的关系,每行
3
3
3个数字
X
,
A
,
B
X,A,B
X,A,B。
如果
X
=
1
X=1
X=1,表示第
A
A
A个小朋友分到的糖果必须和第
B
B
B个小朋友分到的糖果一样多。
如果
X
=
2
X=2
X=2,表示第
A
A
A个小朋友分到的糖果必须少于第
B
B
B个小朋友分到的糖果。
如果
X
=
3
X=3
X=3,表示第
A
A
A个小朋友分到的糖果必须不少于第
B
B
B个小朋友分到的糖果。
如果
X
=
4
X=4
X=4,表示第
A
A
A个小朋友分到的糖果必须多于第
B
B
B个小朋友分到的糖果。
如果
X
=
5
X=5
X=5,表示第
A
A
A个小朋友分到的糖果必须不多于第
B
B
B个小朋友分到的糖果。
小朋友编号从
1
1
1到
n
n
n。
输出格式:
输出一行,表示老师至少需要准备的糖果数,如果不能满足小朋友们的所有要求,就输出
−
1
−1
−1。
数据范围:
1
≤
n
<
1
0
5
1≤n<10^5
1≤n<105
1
≤
K
≤
1
0
5
1≤K≤10^5
1≤K≤105
1
≤
X
≤
5
1≤X≤5
1≤X≤5
1
≤
A
,
B
≤
n
1≤A,B≤n
1≤A,B≤n
这是一个差分约束的问题。差分约束的问题可以化为图论里的最短路或者最长路来做,视具体情况而定。在本题里,可以将每个小朋友看成是图里的顶点,即这些顶点是 x 1 , . . . , x n x_1,...,x_n x1,...,xn,那么对于上面的 5 5 5种情况,实际上是对应着 5 5 5个不同的不等式。例如,对于第 2 2 2种情况, x A < x B ⇔ x B ≥ x A + 1 x_A< x_B\Leftrightarrow x_B\ge x_A+1 xA<xB⇔xB≥xA+1,对于别的情况以此类推。想象我们在求某个图的单源最长路问题,那么对于两个点 A A A和 B B B,如果存在一条边 A → B A\to B A→B权为 1 1 1,那么这两个点的最长路 d A d_A dA和 d B d_B dB,一定会满足 d B ≥ d A + 1 d_B\ge d_A+1 dB≥dA+1。那么可以看出,所有点的最长路 d 1 , . . . , d n d_1,...,d_n d1,...,dn实际上就是差分约束的一个解。如果发现了正环,则说明无解(会得到类似 z > z z>z z>z的不等式)。此外,由于每个小朋友的糖果数要为正,所以还需要满足 d i ≥ 1 d_i\ge 1 di≥1,则想到开个新的点 s s s,从 s s s到其余每个点连一条权为 1 1 1的边,算单源最长路的时候以 s s s为源点即可。如果没发现正环,则每个点都存在从 s s s出发的最长路,那么这个最长路就是一个解。
此外,由于原题要求求总和最小的解,我们可以用反证法证明上面算出的解就是总和最小的。如果不是,那么一定存在某个解 y y y中的在某个点 u u u处的值 y u < d u y_u<d_u yu<du(如果对每个点值都大于等于 d u d_u du,那么总和一定大于等于 ∑ d u \sum d_u ∑du,说明并没有更优),但是建的图已经考虑了所有的不等式了,如果某个解使得 y u < d u y_u<d_u yu<du,那么考虑从点 0 0 0到点 u u u的最长路,这条最长路对应着一个不等式链,而 y u y_u yu一定是无法满足这个不等式链的(事实上这条不等式链就规定了 u u u处值的一个下界)。注意到,如果是求最大值的话,要用最短路来做,做法类似。
代码如下:
#include <iostream>
#include <cstring>
using namespace std;
const int N = 100010, M = 300010;
int n, m;
int h[N], e[M], w[M], ne[M], idx;
long dist[N];
int stk[N], top, cnt[N];
bool st[N];
void add(int a, int b, int c) {
e[idx] = b, ne[idx] = h[a], w[idx] = c, h[a] = idx++;
}
bool spfa() {
dist[0] = 0;
// 由于要判断有没有正环,所以最好将队列改为栈
stk[top++] = 0;
st[0] = true;
while (top) {
int t = stk[--top];
st[t] = false;
for (int i = h[t]; ~i; i = ne[i]) {
int v = e[i];
if (dist[v] < dist[t] + w[i]) {
dist[v] = dist[t] + w[i];
cnt[v] = cnt[t] + 1;
// 如果某个顶点的最短路点数大于n,说明有正环,返回false
if (cnt[v] > n) return false;
if (!st[v]) {
stk[top++] = v;
st[v] = true;
}
}
}
}
return true;
}
int main() {
scanf("%d%d", &n, &m);
memset(h, -1, sizeof h);
while (m--) {
int x, a, b;
scanf("%d%d%d", &x, &a, &b);
if (x == 1) add(b, a, 0), add(a, b, 0);
else if (x == 2) add(a, b, 1);
else if (x == 3) add(b, a, 0);
else if (x == 4) add(b, a, 1);
else add(a, b, 0);
}
// 从0号点向每个点连一条长1的边
for (int i = 1; i <= n; i++) add(0, i, 1);
if (!spfa()) puts("-1");
else {
long res = 0;
for (int i = 1; i <= n; i++) res += dist[i];
printf("%ld\n", res);
}
return 0;
}
时间复杂度 O ( n m ) O(nm) O(nm)(因为要判正环,如果有正环的话,复杂度可能会退化到最差情况。 m m m是图的边数),空间 O ( n ) O(n) O(n)。