贝叶斯核机回归-因果中介分析 (BKMR-CMA)causalbkmr R包

本文介绍了贝叶斯核多元回归-因果中介分析(BKMR-CMA)方法,用于估计复杂混合物的直接、间接和总效应。通过causalbkmr R包,展示如何进行模型拟合、反事实预测,以及计算TE、NDE、NIE等效应。BKMR-CMA能处理非线性和交互作用,适应复杂数据场景,且具有内在多重比较控制和变量选择能力。
摘要由CSDN通过智能技术生成

GAP

混合物的单个元素,暴露混合物和介质的元素以及任何非线性之间的所有真实存在的相互作用需要包括在介质和结果的模型中,以获得无偏估计。随着多维暴露尺寸的增加,使用当前的方法来获得中介效应的无偏估计变得非常困难。

本算法解决的问题

使用BKMR进行中介分析时,可以通过将核心中的可能的非线性和相互作用考虑在内,估计潜在的暴露混合物的直接效应(NDE)、间接效应(NIE)和总效应(CDE)。此外,使用调解者和结果的后验预测分布来预测反事实,并提出一个估计调解效果的算法。

BKMR-CMA概念

BKMR-CMA 是一种结合了贝叶斯核多元回归(Bayesian Kernel Machine Regression)和中介分析(Causal Mediation Analysis)的方法。它的中文全称为“贝叶斯核多元回归-因果中介分析”,英文全称为“Bayesian Kernel Machine Regression-Causal Mediation Analysis”。简称为“BKMR-CMA”。

BKMR-CMA分析中感兴趣的效应

  1. 总效应(Total Effect, TE):这是暴露因素对结果变量的整体影响,包括直接路径和间接路径的影

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

探路者Myra

童叟无欺,愿者上钩,感恩认可

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值