读“基于深度学习的图像识别技术研究综述”有感

“基于深度学习的图像识别技术研究综述“总结

现在流行的图像识别技术都是基于深度学习的算法,经过前辈们的探索改进,图像识别技术经历很多阶段,现如今图像识别技术已经广泛的应用于生活的方方面面,例如交通、刑侦、医疗、科研等方面。
图像识别技术通俗来讲主要分为两个阶段,分别是图像特征提取和图像分类预测。图像特征提取就是运用各种算法来对图像进行提取各种图片特征,然后再根据图像特征进行分类预测。常见的深度学习网络模型主要有卷积神经网络、递归神经网络以及生成对抗网络。R-NN算法就是从图像背景中分离特征,而传统的是使用滑窗法输入图片再以窗口的形式对图片进行特征提取。YOLO算法则可以一次性的识别图片多个特征,从而实现了端到端的图像识别,该方法修补了faster-CNN算法无法满足实时性的缺点,但是其自身也有缺点,就是识别准确性低。
目前深度学习在图像识别方面仍然还有许多不足,例如理论模型不完善、训练数据需要优化、模型参数需要优化等等
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小福仔

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值