Pytorch-GPU版本离线安装

最近在复现一项深度学习的工作,发现自己的pytorch是装的cpu版的(好像当时是直接加清华源,默认是cpu版本)。从官网在线下载速度太慢,还时不时断开连接,我们可以配置conda的清华源去这个问题,但是考虑到是在用组内服务器,配崩了可能影响其它人(虽然我本机以前配置过),这次换个思路解决,从清华镜像源下载对应的安装包手动安装。

Pytorch安装命令

pip install torch==2.1.0 torchvision==0.16.0 torchaudio==2.1.0 --index-url https://download.pytorch.org/whl/cu118
nvidia-smi

在这里插入图片描述
自己查显卡能支持的版本,我的cuda版本最高支持12.3,但我习惯用cuda11.8

清华镜像源下载对应的pytorch安装包

下载地址:https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/linux-64/
注意这是linux版本的,windowx下载把linux-64替换成win-64

pytorch+cuda11.8

在这里插入图片描述
注意自己的python的版本

torchvision-0.16

在这里插入图片描述
注意自己的python的版本

安装pytorch

切换到对应的conda环境

conda activate env-name
conda install --offline  /path/to/pytorch-2.1.0-py3.8_cuda11.8_cudnn8.7.0_0.tar.bz2
conda install --offline  /path/to/pytorch-2.1.0-py3.8_cuda11.8_cudnn8.7.0_0.tar.bz2

检查pytorch是否安装成功

import torch

# 检查是否可以使用 GPU
if torch.cuda.is_available():
    print("CUDA is available! PyTorch can use GPU.")
    print("CUDA version:", torch.version.cuda)
    print("Number of GPUs available:", torch.cuda.device_count())
    print("Current device name:", torch.cuda.get_device_name(0))
else:
    print("CUDA is not available. PyTorch cannot use GPU.")

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值