深度学习经典检测算法--单阶段、两阶段区别

 需要做一个检测任务

有的算法是分两个阶段的,有的算法是只有一个阶段


  • 让我们先来看看单阶段的算法

 现在我们需要做一个猫咪的物体检测,输入一张图像有猫,输出的图像猫身上带了一个框

这个结果,框,我们只需要得到框的四个顶点坐标就可以实现

这就是一个很普通的回归任务

单阶段,一个CNN网络直接做回归,不需要加入其它补充。

经典算法:

YOLOicon-default.png?t=MBR7https://baijiahao.baidu.com/s?id=1664853943386329436&wfr=spider&for=pc


 

  • 两阶段的算法

 输入一张猫咪图像,检测结果是猫咪身上带框的图像

检测结果没有变

但是在检测过程中加入了一些步骤。

加入了一个RPN 区域候选网络

什么是RPNicon-default.png?t=MBR7https://blog.csdn.net/fenglepeng/article/details/117898968

 为了得到最终的结果,在过程中,先进行了一步预选,预选之后,再通过预选结果得到最终结果

对比单阶段来说,双阶段是不是过程更加复杂了呢,

复杂带来的收益,双阶段最终结果会比单阶段直接选择的结果更加准确。

经典算法:

Faster-RCNNicon-default.png?t=MBR7https://blog.csdn.net/weixin_42310154/article/details/119889682

Mask-RCNN  icon-default.png?t=MBR7https://blog.csdn.net/remanented/article/details/79564045

那么单阶段和两阶段算法,怎么选择的问题,是需要根据任务精度以及速度要求来决定的。


  • 优缺点对比 

  • 单阶段
  • 最核心优点:速度非常快
  • 速度快带来的应用,基于视频去检测时,速度快,所能带来的FPS值更高,能做实时检测
  • 相对Mask-RCNN ,只有5帧,在所实时任务存在困难。
  • YOLO的FPS最高能达到200
  • mAP值简单来说就是综合衡量算法效果的一个指标
  •  mAP值是什么icon-default.png?t=MBR7https://blog.csdn.net/bestrivern/article/details/98482493


  • 两阶段算法 

 


 

 

交集: 

并集; 

  • 精度(precision)和召回率(recall)指标

  • 召回率又名查全率

TP做对了的判断,正确的判断成正例

FP做错了的判断,错误的判断成正例

FN错误的判断成负例

TN正确的判断成负例 


  • 置信度

 

  •  PR图

 mAP值,下方所围成的面积

 

 

 

 

<think>好的,我现在需要回答用户关于单阶段算法阶段算法区别及概念的问题。首先,我需要明确这个术语在什么领域常见。根据用户提供的引用,特别是引用[1]提到双阶段目标检测算法,可能这个术语主要出现在目标检测领域。不过,也有可能在其他领域存在类似的双阶段单阶段方法,比如机器学习中的聚类或分类算法。 接下来,我需要定义单阶段阶段算法。根据已有的知识,在目标检测中,双阶段算法如Faster R-CNN先生成区域建议,然后对这些区域进行分类回归。而单阶段算法如YOLO或SSD直接在图像的不同位置预测边界框类别,无需区域建议步骤。这应该是者的核心区别。 然后,需要比较它们的区别,包括流程、效率、精度应用场景。用户可能想知道为什么会有这种类型,各自的优缺点是什么。比如,双阶段算法通常更精确但速度慢,适合对精度要求高的场景;单阶段算法速度快但精度可能略低,适合实时处理。 应用场景方面,双阶段可能用于医学图像分析或安防监控,而单阶段用于自动驾驶或视频监控中的实时检测。需要结合用户提供的引用中的例子,比如引用[1]提到双阶段算法在精确与效率之间的权衡,可以引用这一点。 另外,用户提供的其他引用如K-means递归算法可能不直接相关,但可能需要确认是否在其他领域有类似的双阶段流程。不过根据问题,应该集中在目标检测领域。 需要确保回答结构清晰,分点说明定义、区别、应用场景。同时要加入用户要求的LaTeX公式,比如在解释算法时用数学表达式,例如目标检测中的损失函数,或者准确率计算。例如,在双阶段算法中,区域提议可以用数学符号表示,如生成候选区域$R_i$,然后分类阶段使用$P(class|R_i)$等。 还要检查是否所有行内公式使用$...$,独立公式用$$...$$,并且正确使用中文。最后生成相关问题,可能需要基于回答内容提出,比如比较其他类型的算法,或者深入探讨某个应用场景。 现在需要组织内容,确保引用正确。引用[1]明确提到双阶段算法阶段,可以用来支持定义部分。其他引用可能不直接相关,但如果有必要可以忽略,因为用户的问题主要围绕目标检测中的单双阶段算法。 最后,生成的问题应引导用户进一步探索,例如询问性能对比、优化方法或具体应用案例。</think>### 单阶段算法与双阶段算法的定义、区别及应用场景 #### 1. 定义 - **双阶段算法**:将任务分解为个独立阶段完成。例如,在目标检测中,第一阶段生成候选区域(Region Proposal),第二阶段对候选区域进行分类精调。典型的代表是Faster R-CNN[^1]。数学上,若输入为图像$I$,第一阶段生成候选区域集合$\{R_i\}$,第二阶段计算分类概率$P(c|R_i)$边界框修正$\Delta b_i$。 - **单阶段算法**:直接在输入数据上完成端到端的预测,无需中间候选生成。例如YOLOSSD,通过密集采样预测边界框类别,其输出可表示为: $$ \text{Output} = f_{\theta}(I) \quad \text{其中} \quad f_{\theta} \text{为深度神经网络} $$ #### 2. 核心区别 | **维度** | **双阶段算法** | **单阶段算法** | |----------------|---------------------------------------|----------------------------------| | **流程复杂度** | 分区域提议分类阶段,流程复杂[^1] | 端到端,流程简化 | | **计算效率** | 较慢(需多次特征提取) | 更快(单次前向计算) | | **精度** | 通常更高(阶段精细优化) | 略低(依赖密集预测的覆盖率) | | **典型应用** | 医学图像分析、高精度检测 | 实时视频处理、移动端部署 | #### 3. 应用场景 - **双阶段算法**:适用于对精度要求高且计算资源充足的场景,如卫星图像中的小目标检测[^1]。 - **单阶段算法**:适合实时性需求强的任务,如自动驾驶中的障碍物检测或工业质检中的流水线监控。 #### 4. 数学表达示例 在双阶段算法中,区域提议阶段可能通过滑动窗口或RPN(Region Proposal Network)生成候选区域: $$ R_i = \text{RPN}(I) $$ 分类阶段则使用交叉熵损失函数优化: $$ \mathcal{L}_{\text{cls}} = -\sum_{c} y_c \log(p_c) $$ 单阶段算法通过多任务损失联合优化分类定位: $$ \mathcal{L} = \lambda_{\text{cls}} \mathcal{L}_{\text{cls}} + \lambda_{\text{loc}} \mathcal{L}_{\text{loc}} $$ ---
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

向阳花开0926

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值