需要做一个检测任务
有的算法是分两个阶段的,有的算法是只有一个阶段
-
让我们先来看看单阶段的算法
现在我们需要做一个猫咪的物体检测,输入一张图像有猫,输出的图像猫身上带了一个框
这个结果,框,我们只需要得到框的四个顶点坐标就可以实现
这就是一个很普通的回归任务
单阶段,一个CNN网络直接做回归,不需要加入其它补充。
经典算法:
YOLOhttps://baijiahao.baidu.com/s?id=1664853943386329436&wfr=spider&for=pc
-
两阶段的算法
输入一张猫咪图像,检测结果是猫咪身上带框的图像
检测结果没有变
但是在检测过程中加入了一些步骤。
加入了一个RPN 区域候选网络
什么是RPNhttps://blog.csdn.net/fenglepeng/article/details/117898968
为了得到最终的结果,在过程中,先进行了一步预选,预选之后,再通过预选结果得到最终结果
对比单阶段来说,双阶段是不是过程更加复杂了呢,
复杂带来的收益,双阶段最终结果会比单阶段直接选择的结果更加准确。
经典算法:
Faster-RCNNhttps://blog.csdn.net/weixin_42310154/article/details/119889682
Mask-RCNN https://blog.csdn.net/remanented/article/details/79564045
那么单阶段和两阶段算法,怎么选择的问题,是需要根据任务精度以及速度要求来决定的。
-
优缺点对比
- 单阶段
- 最核心优点:速度非常快
- 速度快带来的应用,基于视频去检测时,速度快,所能带来的FPS值更高,能做实时检测
- 相对Mask-RCNN ,只有5帧,在所实时任务存在困难。
- YOLO的FPS最高能达到200
- mAP值简单来说就是综合衡量算法效果的一个指标
-
mAP值是什么https://blog.csdn.net/bestrivern/article/details/98482493
-
两阶段算法
-
IOU值
- Intersection over Union
- 交集和并集的比值
- 什么是IOUhttps://zhuanlan.zhihu.com/p/357513378
交集:
并集;
-
精度(precision)和召回率(recall)指标
- 召回率又名查全率
TP做对了的判断,正确的判断成正例
FP做错了的判断,错误的判断成正例
FN错误的判断成负例
TN正确的判断成负例
-
置信度
-
PR图
mAP值,下方所围成的面积