Python
文章平均质量分 82
卡拉比丘流形
一枚对社会心理学、预防医学、数学建模和人工智能感兴趣的小菜鸟【本:大数据→研:人工智能(情感计算方向)】,欢迎大家一起来交流学习呀!
展开
-
Pytorch基础知识点复习
本篇博客是本人对pytorch使用的查漏补缺,参考资料来自[深入浅出PyTorch](https://datawhalechina.github.io/thorough-pytorch),本文主要以提问的方式对知识点进行回顾,列举了pytorch初学者常见的问题,大家可以按需求进行查阅,或者对自己的pytorch的基础知识进行测试。原创 2024-01-14 21:59:24 · 1239 阅读 · 0 评论 -
海口租房数据分析
原创 2023-12-24 23:25:10 · 80 阅读 · 0 评论 -
(14)学习笔记:动手深度学习(Pytorch神经网络基础)
将输入数据作为其前向传播函数的参数。通过前向传播函数来生成输出。请注意,输出的形状可能与输入的形状不同。例如,我们上面模型中的第一个全连接的层接收一个20维的输入,但是返回一个维度为256的输出。计算其输出关于输入的梯度,可通过其反向传播函数进行访问。通常这是自动发生的。存储和访问前向传播计算所需的参数。根据需要初始化模型参数。# 用模型参数声明层。这里,我们声明两个全连接的层# 调用`MLP`的父类`Module`的构造函数来执行必要的初始化。原创 2023-11-05 22:12:49 · 448 阅读 · 0 评论 -
Git基础命令实践
本文主要记录了我在学习git操作的过程,以及如何使用GitHub。建议先参考廖雪峰的git教程实操练习一遍,再利用进行巩固。下文内容是对廖雪峰git教程的实践本文记录了我在学习git过程中的一些常用命令,当我们对git有一个整体而全面的认识之后,我们后面可以通过查文档,或者GPT来完成任务。原创 2023-10-29 18:39:23 · 296 阅读 · 0 评论 -
论文阅读:Rethinking the Learning Paradigm for Dynamic Facial Expression Recognition【CVPR2023】
MIL流水线通常包括四个步骤:实例生成、实例特征提取、实例聚合和分类。 在DFER的情况下,所提出的M3DFEL框架遵循该步骤:利用3DCNN从生成的3D-instances中提取特征并学习短期时间关系。DLIAM是用来模拟长期的时间关系,同时动态融合的实例到一个包。为了保持包级和实例级的时间一致性,引入了DMZ(动态归一化)。原创 2023-10-22 11:39:56 · 605 阅读 · 0 评论 -
八、图神经网络基础【CS224W】(Datawhale组队学习)
本文主要回顾了一下深度学习的相关知识,先从总体上对图神经网络进行了简要介绍,图表示学习从数据降维发展到图嵌入到图神经网络。图神经网络需要一些谱图论的知识,因此本文又介绍了谱图论的相关知识,包括拉普拉斯矩阵和傅里叶变化等。最后介绍了图神经网络中常见的两种操作:图滤波和图池化。原创 2023-03-03 00:35:41 · 815 阅读 · 0 评论 -
七、标签传播与节点分类【CS224W】(Datawhale组队学习)
本篇文章介绍了半监督节点分类问题的常见概念和各种求解方法的对比,之后介绍了五种解决半监督节点分类问题的算法,分别是Label Propagation ( Relational Classification)、lterative Classification、Correct & Smooth、Belief Propagation、Masked Lable Prediction,其中前两种属于集体分类,第三种属于后处理,第四种属于消息传递,第五种属于自监督方法。原创 2023-03-01 00:36:19 · 868 阅读 · 0 评论 -
MAML算法详解(元学习)
本文介绍了基于元学习的算法MAML,MAML目标是训练一组初始化参数,模型通过初始化参数,仅用少量数据就能实现快速收敛的效果。为了达到这一目的,模型需要在不同任务上进行学习来不停修正初始化参数,使其能够适应不同种类的数据,最后对MAML和预训练模型进行了对比。原创 2023-02-28 01:09:21 · 1783 阅读 · 0 评论 -
六、PageRank算法与代码实战【CS224W】(Datawhale组队学习)
PageRank是1997年谷歌第一代搜索引擎的底层算法。大幅提高了搜索结果的相关率和质量,成为互联网第一个爆款应用,造就了传奇的谷歌公司。PageRank把互联网表示为由网页节点和引用链接构成的有向图,通过链接结构,计算网页节点重要度。来自重要网页节点的引用链接,权重更高。我们可以通过线性方程组、矩阵乘法、特征值和特征向量、随机游走、马尔科夫链,五种角度,理解并求解PageRank值。之后对PageRank的原创 2023-02-27 01:53:12 · 1020 阅读 · 0 评论 -
五、DeepWalk、Node2Vec论文精读与代码实战【CS224W】(Datawhale组队学习)
本篇文章主要讲解了DeepWalk算法和Node2Vec算法- DeepWalk算法能够通过随机游走序列(邻居信息和社群信息)学习网络的连接结构信息,将节点编码为连续地维的稠密的向量空间,新加入节点时不需要重新训练,只需要输入新节点和新连接关系,再进行增量训练,并且它可以进行并行计算。在代码实战部分,使用维基百科词条数据构建无向图,生成随机游走节点序列,训练Word2Vec模型,通过计算PageRank得到关键词条,并对embedding结果进行降维可视化。- Node2Vec通过调节p、q值,实现有偏原创 2023-02-25 01:44:00 · 955 阅读 · 0 评论 -
四、图嵌入表示学习【CS224W】(Datawhale组队学习)
本篇文章讨论了图表示学习,一种可以学习节点和图的嵌入用于下游任务而不需要人工特征工程的方法。采用了编码器-解码器的框架,编码器进行嵌入查找,解码器对嵌入预测得分来计算节点的相似度,讨论了节点相似度方法DeepWalk和Node2vec。原创 2023-02-20 20:53:15 · 545 阅读 · 0 评论 -
三、NetworkX工具包实战3——特征工程【CS224W】(Datawhale组队学习)
本篇文章主要介绍了NetworkX工具包实战在特征工程上的使用,利用NetworkX工具包对节点的度、节点重要度特征 、社群属性和等算法和拉普拉斯矩阵特征值分解等进行了计算,最后对北京上海地铁站图数据进行了挖掘。原创 2023-02-20 15:54:27 · 1840 阅读 · 15 评论 -
三、NetworkX工具包实战2——可视化【CS224W】(Datawhale组队学习)
本文主要介绍了使用NetworkX自带的可视化函数nx.draw,绘制不同风格的图。设置节点尺寸、节点颜色、节点边缘颜色、节点坐标、连接颜色等,并介绍了有向图可视化的模板和如何自定义节点坐标,最后以【美国128城市交通关系无向图可视化】和【国际象棋对局MultiDiGraph多路图可视化】实战演示了如何利用NetworkX工具包解决实际问题。原创 2023-02-20 13:44:48 · 2166 阅读 · 20 评论 -
三、NetworkX工具包实战1——创建图、节点和连接【CS224W】(Datawhale组队学习)
本篇文章主要介绍了如何通过NetworkX工具包创建图、节点和连接。通过NetworkX自带的函数和API,创建内置的样例图,包括各种有向图、无向图、栅格图、随机图、社交网络。在NetworkX中创建单个节点、创建多个节点、图本身作为节点。在NetworkX中创建连接,设置连接的属性特征。原创 2023-02-18 01:30:05 · 1341 阅读 · 0 评论 -
二、图的基本表示和特征工程【CS224W】(Datawhale组队学习)
本文介绍图的基本表示包括无向图、有向图、二分图、有权图、邻接矩阵,同时对图的连通性进行了介绍。本文还介绍了传统的图机器学习,传统的图机器学习的关键在于特征工程,图的特征工程主要包括节点、连接和全图三个层面。原创 2023-02-16 01:18:44 · 776 阅读 · 0 评论 -
一、图机器学习导论【CS224W】(Datawhale组队学习)
本篇博客首先介绍了图的广泛应用场景,引出了图是描述大自然的通用语言。然而现有的机器学习和深度学习方法不能有效利用图信息进行学习,从而引出了图深度学习的基本概念和难点。图深度学习广泛的应用在我们的学习生活中,蕴含了巨大的商业价值和科研价值,同时图深度学习可以和人工智能各方向结合(大模型、多模态、可信计算、NLP、情感计算),促进其它方向的发展。原创 2023-02-13 23:05:11 · 959 阅读 · 0 评论 -
七、图像分类模型的部署(Datawhale组队学习)
本文主要讲述了ONNX-ONNX Runtime部署流程,首先将训练好的Pytorch模型转ONNX模型,这样我们就可以将ONNX模型在任何安装了ONNX Runtime环境的机器上进行运行,进行单张图片的预测、调用摄像头进行实时画面的预测等。使用ONNX我们可以让模型在不同框架之间进行迁移,方便我们低成本的将模型部署到移动设备中去。原创 2023-01-29 13:38:20 · 949 阅读 · 4 评论 -
六、可解释性分析(Datawhale组队学习)
本文简要的介绍了一下CAM算法、LIME算法和DFF算法,之后实战部分利用torch-cam、pytorch-gradcam、captum、shap、lime工具包对模型可解释性分析,通过可解释性分析我们能够知道哪部分区域对预测结果比较重要,哪部分区域对预测结果产生正向影响,哪部分产生负面影响。通过可解释性分析我们可以在一定程度上找到模型预测出错的原因,例如在lime实战中,预测概率最大的一类是芒果,但是图片中并没有芒果,通过观察可解释性分析结果可以发现颜色对模型预测的干扰比较大,之后我们就可以朝这个方向改原创 2023-01-28 23:26:03 · 1635 阅读 · 1 评论 -
五、在测试集上评估图像分类算法精度(Datawhale组队学习)
本文主要介绍了如何在测试集上评估图像分类算法精度以及图像语义特征的可视化。包括准确率、top-n准确率、召回率、AUC、AP等常见的模型评价指标。对于分类错误的图片我们可以单独展示出来,便于我们找到分类错误的原因并给我们未来算法的改进提供思路。对于图像特征的可视化我们可以采用t-SNE降维和UMAP降维的方法,这两种方法大致思想都是使高维空间中接近的点在低维空间中任然接近。对于通过降维算法我们可以将图片降维至于二维或者三维,这样可以方便我们对其进行可视化展示。原创 2023-01-27 16:28:16 · 1829 阅读 · 0 评论 -
四、新图片、新视频预测(Datawhale组队学习)
本篇文章主要讲述了如何利用上次[三、利用迁移学习进行模型微调(Datawhale组队学习)](https://blog.csdn.net/qq_46378251/article/details/128751646?spm=1001.2014.3001.5501)得到的图像分类模型,分别在新的图像文件、新的视频文件和摄像头实时画面上进行预测。!!!注意:如果之前的图像分类模型是在CPU上训练得到的,这里用GPU版的pytorch导入模型的时候可能会出错,大家一定要注意版本的统一。原创 2023-01-25 15:03:56 · 1115 阅读 · 0 评论 -
三、利用迁移学习进行模型微调(Datawhale组队学习)
本篇文章主要介绍了通过迁移学习微调训练自己的图像分类模型。常见的迁移学习的方式有以下三种:只微调训练模型最后一层(全连接分类层);微调训练所有层;随机初始化模型全部权重,从头训练所有层。不同的迁移学习范式复用的是不同层次的卷积神经网络的特征和权重,我们在选择迁移学习方式的时候主要要考虑我们的数据集和预训练模型所用的数据集之间的分布和数据量大小差异。对训练过程中产生的日志数据我们可以进行可视化,我们可以使用wandb创建自己的可视化项目。原创 2023-01-24 03:43:14 · 2519 阅读 · 3 评论 -
游戏背景知识
S和B呈现的数值越高,饱和度明度越高,页面色彩强烈艳丽,对视觉刺激是迅速的,醒目的效果,但不益于长时间的观看。H的范围是0-360°,S的范围是0-100%,B的范围是0-100%。6位数字分为3组,每组两位,第1、2位表bai示红色,第2、3位表示绿色、第4、5位表示蓝,采取十六进制,由“00”到“FF”,分别对应十进制的“0”到“255”。色彩模式是工业界的一种颜色标准,是通过对红(Red)、绿(Green)、蓝(Blue)三个颜色通道的变化以及它们相互之间的叠加来得到各式各样的颜色的。原创 2022-10-09 16:40:17 · 894 阅读 · 0 评论 -
Markdown使用指南
Markdown是一种轻量级标记语言,创始人为约翰·格鲁伯(英语:John Gruber)。它允许人们使用易读易写的纯文本格式编写文档,然后转换成有效的XHTML(或者HTML)文档。由于Markdown的轻量化、易读易写特性,并且对于图片,图表、数学式都有支持,许多网站都广泛使用Markdown来撰写帮助文档或是用于论坛上发表消息。原创 2022-08-24 11:49:25 · 713 阅读 · 0 评论 -
基于聚类的离群点检测(sklearn实现)
本文主要包括以下三个方面:1. 对Iris数据集应用kmeans聚类方法进行离群点检测,并分别采用tsne、MDS、Isomap和PCA降维将原数据降到2维并在新数据中标出离群点。2. 使用Kmeans聚类、DBCAN聚类和BIRCH聚类方法分别对去除离群点前后的数据集进行聚类,最后通过比较他们的NMI值确定聚类效果的好坏3. 对Iris数据集先分别采用sne、MDS、Isomap和PCA降维,然后对降维后的数据进行离群点的检测。原创 2022-04-22 11:06:56 · 6823 阅读 · 1 评论 -
Python第三方包安装
目录第三方包第三方包在Python标准库以外还存在成千上万并且不断增加的其他组件 (从单独的程序、模块、软件包直到完整的应用开发框架),访问 Python 包索引 (https://pypi.org/)即可获取这些第三方包。...原创 2022-01-25 21:41:31 · 983 阅读 · 0 评论 -
宠物管理系统CLI版本(Python实现/内附完整代码)
这里写目录标题一、名词解释1.1 什么是CLI?1.2 什么是GUI?二、项目目的三、宠物信息管理系统3.1 项目背景3.2 需求分析3.2.1 系统描述3.2.2 功能结构3.3 主要功能描述3.3.1 主界面:3.3.2 新建宠物信息3.3.3 显示全部宠物信息3.3.4 查询宠物信息3.3.5 修改宠物信息3.3.6 删除宠物信息3.4 不足与扩展四、项目制作4.1 框架搭建4.2 新增宠物信息4.3 显示全部宠物信息4.4 查询宠物信息4.5 修改宠物信息4.6 删除宠物信息4.7 发布与运行五、完原创 2022-01-19 18:48:31 · 4172 阅读 · 3 评论 -
Python内置函数
Python内置函数官方文档按字母排序的内置函数预览1. abs()函数2. all() 函数3. any() 函数4. bin()函数5. bool()函数6. bytearray()函数7. callable()函数8. chr()函数9. dict()函数10. dir()函数11. divmod()函数12. enumerate() 函数13. eval() 函数14. exec() 函数15. filter()函数16. format()函数17. float() 函数18. frozenset原创 2022-01-17 22:43:30 · 778 阅读 · 0 评论 -
Python装饰器
装饰器1.装饰器的基本概念2.装饰器的原型3.装饰器的定义与调用4. 装饰器的嵌套5. 带有参数的装饰器6. 带返回值的装饰器7. 定义通用装饰器8. 使用面向对象的方式定义装饰器总结1.装饰器的基本概念功能:不改变现有函数的前提下,扩展函数功能语法:使用@符号2.装饰器的原型问题: 在执行printInfo函数前,进行权限校验;执行后,进行日志记录 不允许修改printInfo函数def check(func): def checkAndLog(): pr原创 2022-01-16 20:59:17 · 326 阅读 · 2 评论 -
Python闭包函数
闭包函数1.闭包函数的基本概念2.闭包函数的语法3.对比正常的局部变量4.应用场景4.1 一般写法4.2 使用闭包函数5.小结:1.闭包函数的基本概念概念:内函数使用了外函数的局部变量,并且外函数把内函数返回出来的过程叫做闭包,这个内函数叫做闭包函数。本质:相对于面向对象的“封装”,闭包可以理解为是函数式编程中的“封装”。闭包函数的语法2.闭包函数的语法def outer(): a = 5 def inner(): #闭包函数 print(a) #通过使用外部函数原创 2022-01-16 19:03:34 · 1052 阅读 · 0 评论 -
Python偏函数
偏函数偏函数的作用1.使用内置函数指定参数2.自定义函数3.使用偏函数偏函数的作用当函数的参数个数太多,需要简化时,使用functools.partial可以创建一个新的函数,这个新函数可以固定住原函数的部分参数,从而在调用时更简单。1.使用内置函数指定参数a = int("1100",base=10) #默认按照十进制来转化字符串print(a,type(a))a = int("0b1111",base=2) #按二进制来转换字符串print(a,type(a))1100 <cla原创 2022-01-16 18:34:46 · 174 阅读 · 0 评论 -
Python返回函数
返回函数1.概念2.实例3.小结1.概念函数返回值也可以是函数2.实例def food(name): def prepare(): print(f"[{name}]制作步骤:备菜...") def cook(): print(f"[{name}]制作步骤:烹饪...") def serve(): prepare() cook() print(f"[{name}]制作步骤:上菜...")原创 2022-01-16 11:57:45 · 279 阅读 · 0 评论 -
【pandas读入数据报错】OSError: Initializing from file failed
问题描述:pandas载入csv格式数据报错B = pd.read_csv("C:/Users/hp/Desktop/动手学数据分析/第一单元项目集合/train.csv")B.head(3)报错:OSError: Initializing from file failed 原因分析:调用pandas的read_csv()方法时,默认使用C engine作为parser engine,而当文件名中含有中文的时候,用C engine在部分情况下就会出错。解决方案:在调用read_c原创 2022-01-13 21:05:37 · 987 阅读 · 0 评论 -
Python高阶函数_map,reduce,sorted和filter
标题高阶函数1.map1.1 使用自定义函数1.2 使用lambda表达式1.3 多个可迭代对象,作为参数1.4 map函数的综合实例2.reduce3.sorted3.1 默认方法3.2 设置key为函数3.3 对字典进行排序字典3.4 按余数大小进行排序3.5 sort()和sorted的区别4. filter小结高阶函数概念:把函数当成参数传递的函数就是高阶函数。def printInfo(): #定义了一个函数 print("info.....")printInfo() #输出结果:原创 2022-01-11 14:45:14 · 381 阅读 · 0 评论 -
Python匿名函数(lambda表达式)
目录匿名函数(lambda表达式)1.1 传统定义函数的写法:1.2 无参的lambda表达式1.3 有参的Lambda表达式1.3.1 lambda表达式可以使用可变参数1.3.2 lambda表达式可以使用关键字1.4 有条件判断的lambda表达式1.5 总结匿名函数(lambda表达式)概念:没有名字的函数,”一句话的函数“作用:简化代码,和其他高阶函数配合使用语法: lambda 参数 : 表达式“表达式”(expression)是一个单纯的运算过程,总是有返回值;“语句”(stat原创 2022-01-11 12:42:20 · 631 阅读 · 0 评论 -
Python生成器
文章目录生成器生成器函数总结生成器迭代器是Python解释器内部定义的数据结构。生成器 (generator)本质就是迭代器,只是可以自定义数据结构和计算过程。定义生成器有2种方式:生成器函数生成器表达式生成器函数概念:包含yield关键字的函数,就是生成器函数def getNum(): print("返回1") # return 1 #一般的函数 yield 1 #生成器函数 res = getNum() #一般函数返回数字1;生成器函数返回了生成器对象 :generat原创 2022-01-11 03:09:42 · 432 阅读 · 0 评论 -
Python推导式
又称解析式,是Python的一种独有特性。文章目录1.基本概念2.列表推导式2.1循环模式2.2.筛选模式2.3.多重循环3. 字典推导式4.集合推导式5.小结:1.基本概念概念:推导式是可以从一个数据序列构建另一个新的数据序列的方式。作用:简化代码分类:列表推导式字典推导式集合推导式 \begin{aligned}列表推导式 \\字典推导式 \\集合推导式\end{aligned}列表推导式字典推导式集合推导式2.列表推导式2.1循环模式通过for循环来配合表达式原创 2022-01-04 17:00:03 · 624 阅读 · 0 评论 -
python迭代器
文章目录一、为什么学习迭代器?二、可迭代对象2.1概念2.2Python中的可迭代三、迭代器使用iter()将可迭代对象变为迭代器使用next()方法可以遍历迭代器使用异常处理辅助遍历如何从头访问迭代器其他遍历的方式应用案例总结一、为什么学习迭代器?作用:对于大数据量的访问,可以节省内存空间。原理:迭代器不会一次性得到所有数据,而是循环一次计算/读取一次,相当于内存中始终只有一份数据应用:我们学过的for循环,本质上就是将“可迭代对象”转化为“迭代器”,逐一访问元素的。二、可迭代对象2.1原创 2022-01-03 14:48:52 · 279 阅读 · 0 评论 -
Matplotlib的常用操作实战
文章目录前言一、matplotlib是什么?二、实战练习1.plot,xlim,xlabel,grid的使用问题1:2.scatter,legend,title问题1:3.xtick,text,annotate问题1:问题2:4.axvline,axvspan,综合图问题1:5.并列柱形图与堆积条形图问题1:问题2:6.分裂式饼图与内嵌式环形饼图问题1:问题2:问题3:7.阶梯图棉棒图极坐标图问题1:问题2:问题3:8.读入excel和子图问题1:总结前言 本文介绍了一些matplotlib的使用技原创 2021-12-20 19:08:18 · 3719 阅读 · 1 评论 -
使用plt.colorbar时报错TypeError: You must first set_array for mappable
项目场景:在我们使用matplotlib绘制饼图的时候无法正常显示颜色条问题描述:执行import matplotlib.cm as cmimport matplotlib as mp1import matplotlib.pyplot as pltmp1.rcParams["font.sans-serif"]=["SimHei"]mp1.rcParams["axes.unicode_minus"]=Falseplt.figure(figsize=(10,8), dpi=100)lab原创 2021-12-13 13:03:21 · 3039 阅读 · 1 评论