图论定理汇总(一)

第一章 图的基本概念

基本概念

名词概念
有限图顶点集和边集都有限的图称为有限图;
平凡图只有一个顶点而无边的图称为平凡图;其他所有的图都称为非平凡图
空图边集为空的图称为空图;
n阶图顶点数为n的图称为n阶图;
(n, m) 图顶点数为n,边数为m的图称为(n, m) 图;
边的重数连接两个相同顶点的边的条数称为边的重数;重数大于1的边称为重边;
端点重合为一点的边称为环;
简单图无环无重边的图称为简单图;其余的图称为复合图;
顶点u与v相邻接顶点u与v间有边相连接;其中u与v称为该边的两个端点;
顶点u与边e相关联顶点u是边e的端点;
e 1 e_1 e1与边 e 2 e_2 e2相邻接 e 1 e_1 e1与边 e 2 e_2 e2有公共端点;
孤立点不与任何边相关联的点;
自补图图G与其补图同构
k k k-正则图 G = ( V , E ) G = (V, E) G=(V,E)为简单图,如果对所有 v ∈ V v \in V vV,有 d ( v ) = k d(v) = k d(v)=k,
完全图和完全偶图 K n , n K_{n,n} Kn,n 均是正则图(n-1 正则图,所有 d ( v ) = n − 1 d(v) = n-1 d(v)=n1
途径(或通道或通路)一个有限非空序列 w = v 0 e 1 v 1 e 2 v 2 … e k v k \color{red}w= v_0 e_1 v_1 e_2 v_2…e_k v_k w=v0e1v1e2v2ekvk,它的项交替地为顶点和边 (点和边可重复)
边不重复的途径称为图的一条迹
顶点不重复的途径称为图的一条路。
闭途径、闭迹(回路)与圈起点与终点重合的途径、迹、路
k k k长度为 k k k的圈
奇圈 k k k为奇数
偶圈 k k k为偶数
l l l 部图简单图 G G G的点集 V V V有一个划分: V = ⋃ i = 1 l V i , V i ∩ V j = Φ , i ≠ j \begin{aligned}V&=\bigcup_{i=1}^lV_i,V_i\cap V_j=\Phi,i\neq j\end{aligned} V=i=1lVi,ViVj=Φ,i=j 且所有的 V i V_i Vi非空, V i V_i Vi内的点均不邻接
完全 l l l 部图如果在一个 l l l 部图 G G G中,任意部 V i V_i Vi中的每个顶点同 G G G中其它各部中的每个顶点均邻接
完全 l l l 几乎等部图如果在一个 n n n 个点的完全 l l l 部图 G G G 中有: n = k l + r , 0 ≤ r < l ∣ V 1 ∣ = ∣ V 2 ∣ = ⋯ = ∣ V r ∣ = k + 1 ∣ V r + 1 ∣ = ∣ V r + 2 ∣ = ⋯ = ∣ V l ∣ = k \begin{aligned}&n=kl+r,0\leq r<l\\&|V_1|=|V_2|=\cdots=|V_r|=k+1\\&|V_{r+1}|=|V_{r+2}|=\cdots=|V_l|=k\end{aligned} n=kl+r,0r<lV1=V2==Vr=k+1Vr+1=Vr+2==Vl=k
分支点内点和树根统称

(一)、图的定义与图论模型

(二)、图的同构

定义: 设有两个图 G 1 = ( V 1 , E 1 ) G_1=(V_1, E_1) G1=(V1,E1) G 2 = ( V 2 , E 2 ) G_2=(V_2, E_2) G2=(V2,E2), 若在其顶点集合间存在双射(即存在一一对应),使得边之间存在如下关系:设 u 1 ↔ u 2    v 1 ↔ v 2 , u 1 , v 1 ∈ V 1 , u 2 , v 2 ∈ V 2 ; u 1 v 1 ∈ E 1 u_1↔u_2 ~~ v_1↔v_2, u_1,v_1 \in V_1, u_2,v_2 \in V_2; u_1v_1 \in E_1 u1u2  v1v2,u1,v1V1,u2,v2V2;u1v1E1,当且仅当 u 2 v 2 ∈ E 2 u_2v_2 \in E_2 u2v2E2, 且 u 1 v 1 u_1v_1 u1v1 u 2 v 2 u_2v_2 u2v2的重数相同。称 G 1 G_1 G1 G 2 G_2 G2同构,记为: G 1 ≅ G 2 G_1\cong G_2 G1G2

由定义可以得到图同构的几个必要条件:

(1) 顶点数相同;(2) 边数相同;(3) 关联边数相同的顶点个数相同。

图不同构的充分条件:① 顶点数不相同;② 边数不相同;③ 度数相等的顶点个数不相同。(满足一个即否定)

3 个顶点的非同构的所有简单图有 4 个,4 个顶点的非同构的所有简单图有 11 个

非同构的 4 阶、5 阶、6 阶树的个数分别为 2、3、6.

(三)、完全图、偶图与补图

定理: n n n阶图 G G G是自补图( G ≅ G ‾ G\cong\overline{G} GG), 则有: n = 0 , 1 ( mod ⁡ 4 ) n=0,1(\operatorname{mod}4) n=0,1(mod4)

(四)、顶点的度与图的度序列

定理: G = ( V , E ) G= (V, E) G=(V,E) 中所有顶点的度的和等于边数 m m m 2 2 2 倍,即:(该定理还有一个名字叫握手定理)

∑ v ∈ V ( G ) d ( v ) = 2 m \sum_{\begin{array}{c}v\in V(G)\\\end{array}}d\left(v\right)=2m vV(G)d(v)=2m

推论 1 在任何图中,奇点个数为偶数。(奇点: 度为奇数的点)

推论 2 正则图的阶数和度数不同时正则图度数为奇数,即 d ( v ) d(v) d(v) 为奇数 ,也即 k 正则图中的 k 为奇数,并且顶点数为 偶数。(设 G = ( V , E ) G = (V, E) G=(V,E)为简单图,如果对所有 v ∈ V v \in V vV,有 d ( v ) = k d(v) = k d(v)=k,称图 G G G k k k-正则图 )

定理: 非负整数组( d 1 , d 2 , … , d n d_1, d_2,…, d_n d1,d2,,dn)是图的度序列的充分必要条件是: ∑ i = 1 n d i \sum_{i=1}^nd_i i=1ndi 为偶数。

定理: 非负整数组
π = ( d 1 , d 2 , ⋯   , d n ) , d 1 ≥ d 2 ≥ ⋯ ≥ d n , ∑ i = 1 n d i = 2 m        注意公式中数组元素为降序排列 \color{red}{\pi=(d_1,d_2,\cdots,d_n),d_1\geq d_2\geq\cdots\geq d_n,\sum_{i=1}^nd_i=2m} ~~~~~~~ \text{注意公式中数组元素为降序排列} π=(d1,d2,,dn),d1d2dn,i=1ndi=2m       注意公式中数组元素为降序排列

是图序列的充分必要条件是:
π 1 = ( d 2 − 1 , d 3 − 1 , ⋯   , d d 1 + 1 − 1 , d d 1 + 2 , ⋯   , d n )         注意 d 1 不变 \color{red}{\begin{aligned}\pi_1=(d_2-1,d_3-1,\cdots,d_{d_1+1}-1,d_{d_1+2},\cdots,d_n) ~~~~~~~ \text{注意$d_1$不变} \end{aligned}} π1=(d21,d31,,dd1+11,dd1+2,,dn)       注意d1不变

(五) 图的频序列及其性质

定理: 一个简单图 G G G n n n个点的度不能互不相同

定义: n n n阶图 G G G的各点的度取 s s s个不同的非负整数 d 1 , d 2 , . . . , d s . d_1,d_2,...,d_s. d1,d2,...,ds.。又设度为 d i d_i di的点有 b i b_i bi ( i = 1 , 2 , … , s ) (i = 1,2,…,s) (i=1,2,,s),则
∑ i = 1 s b i = n \color{red}\sum_{i=1}^{s}b_i=n i=1sbi=n

定理 5 一个 n n n 阶图 G 和它的补图 G ˉ \bar{G} Gˉ 有相同的频序列

(一)、子图的相关概念

定理: 简单图 G = ( n , m ) G=(n,m) G=(n,m)的所有生成子图个数为 2 m \color{red}2^m 2m(即 C m 0 + C m 1 + C m 2 + . . . + C m m C_m^0 + C_m^1 + C_m^2 + ... + C_m^m Cm0+Cm1+Cm2+...+Cmm

“超立方体” 可以采用积图来递归构造。定义如下:

(1) 1 方体 Q 1 = K 2 \color{red}Q_{1}=K_{2} Q1=K2
(2) n n n 方体定义为: Q n = K 2 × Q n − 1 \color{red}Q_n=K_2\times Q_{n-1} Qn=K2×Qn1

超立方体 Q 是具有 2 n 2^n 2n 个顶点, n 2 n − 1 n2^n-1 n2n1 条边的 n n n 正则二部图,

(三)、路与连通性

2、连通性性质

定理1: 若图 G G G不连通,则其补图连通 ( G G G 不连通,一定有多个分支)

3、偶图的判定定理

定理2 一个图是偶图当且仅当它不包含奇圈。(偶图指一个图,它的点集可以分解为两个(非空)子集 X X X Y Y Y,使得每条边的一个端点在 X X X中,另一个端点在 Y Y Y中,奇圈是指路径长度为奇数的圈)

(二)、图的代数表示

(5) 定理:设 A k ( G ) = ( a i j ( k ) ) A^k(G)=({a_{ij}}^{(k)}) Ak(G)=(aij(k)),则 a i j ( k ) {a_{ij}}^{(k)} aij(k)表示顶点 v i v_i vi到顶点 v j v_j vj的途径长度为 k k k的途径条数。 A k ( G ) A^k(G) Ak(G) 表示 A ( G ) A(G) A(G) k k k 次方,其中 A ( G ) A(G) A(G) 为邻接矩阵)☆☆☆☆☆☆

推论: (1) A 2 A^2 A2的元素 a i i ( 2 ) a_{ii}^{(2)} aii(2)(主对角线上的元素) 是 v i v_i vi的度数, A 3 A^3 A3的元素 a i i ( 3 ) a_{ii}^{(3)} aii(3) (主对角线上的元素) 是含 v i v_i vi的三角形个数的 2 倍;( A 3 A^3 A3 根据定理知表示 v i v_i vi到顶点 v j v_j vj的途径长度为 3 3 3 的途径条数, a i i ( 3 ) a_{ii}^{(3)} aii(3) 则表示 v i v_i vi到自身 v i v_i vi的途径长度为 3 3 3 的途径条数,途径条数为 3 且经过自身,一定是三角形 )(因为途径是可以重复顶点和边的,因此 a i i ( 2 ) a_{ii}^{(2)} aii(2) 即表示从自身出发到其他邻接的顶点然后又回来)

(一)、邻接谱

定义2: 图的邻接矩阵 A ( G ) A(G) A(G)的特征多项式的特征值及其重数,称为 G G G的邻接谱。

定义2 若两个非同构的 n n n阶图具有相同的谱,则称它们是同谱图。

定理1 设单图 A ( G ) A(G) A(G)的谱为: S p e c ( G ) = ( λ 1 λ 2 ⋯ λ s m 1 m 2 ⋯ m s ) \mathrm{Spec}(G)=\begin{pmatrix}\lambda_1&\lambda_2&\cdots&\lambda_s\\m_1&m_2&\cdots&m_s\end{pmatrix} Spec(G)=(λ1m1λ2m2λsms),则:
∑ i = 1 s m i λ i 2 = 2 m ( G ) \sum_{i=1}^sm_i\lambda_i^2=2m(G) i=1smiλi2=2m(G)

(一)、 l l l 部图的概念与特征

定义1 若简单图 G G G的点集 V V V有一个划分:
V = ⋃ i = 1 l V i , V i ∩ V j = Φ , i ≠ j \begin{aligned}V&=\bigcup_{i=1}^lV_i,V_i\cap V_j=\Phi,i\neq j\end{aligned} V=i=1lVi,ViVj=Φ,i=j

且所有的 V i V_i Vi非空, V i V_i Vi内的点均不邻接,称 G G G是一个 l l l 部图。(当 l l l = 2 时,为偶图,即 l l l 部图是偶图的扩展)

定义2 如果在一个 l l l 部图 G G G中,任意部 V i V_i Vi中的每个顶点同 G G G中其它各部中的每个顶点均邻接,称 G G G为完全 l l l 部图。记作: ( l l l = 2 时,为完全偶图)
G 1 = K n 1 , n 2 , ⋯   , n l , ( n i = ∣ V i ∣ , 1 ≤ i ≤ l ) G_1=K_{n_1,n_2,\cdots,n_l},(n_i=\left|V_i\right|,1\leq i\leq l) G1=Kn1,n2,,nl,(ni=Vi,1il)
显然:
∣ V ∣ = ∑ i l n i , m ( G ) = ∑ 1 ≤ i < j ≤ l n i n j \begin{aligned}\left|V\right|&=\sum_i^ln_i, &m\left(G\right)=\sum_{1\leq i<j\leq l}n_in_j\end{aligned} V=ilni,m(G)=1i<jlninj

定义3 如果在一个 n n n 个点的完全 l l l 部图 G G G 中有:
n = k l + r , 0 ≤ r < l ∣ V 1 ∣ = ∣ V 2 ∣ = ⋯ = ∣ V r ∣ = k + 1 ∣ V r + 1 ∣ = ∣ V r + 2 ∣ = ⋯ = ∣ V l ∣ = k \begin{aligned}&n=kl+r,0\leq r<l\\&|V_1|=|V_2|=\cdots=|V_r|=k+1\\&|V_{r+1}|=|V_{r+2}|=\cdots=|V_l|=k\end{aligned} n=kl+r,0r<lV1=V2==Vr=k+1Vr+1=Vr+2==Vl=k

则称 G G G n n n 阶完全 l l l 几乎等部图,记为 T l , n T_{l, n} Tl,n

∣ V 1 ∣ = ∣ V 2 ∣ = . . . = ∣ V l ∣ |V_1|=|V_2|=...=|V_l| V1=V2=...=Vl 的完全 l l l 几乎等部图称为完全 l l l 等部图。

定理1: 连通偶图的 2 2 2 部划分是唯一的。

定理2: n n n阶完全偶图 K n 1 , n 2 K_{n1,n2} Kn1,n2 的边数 m = n 1 n 2 m=n_1n_2 m=n1n2, 且有:
m ≤ ⌊ n 2 4 ⌋ m\leq\left\lfloor\frac{n^2}4\right\rfloor m4n2

定理3 n n n l l l 部图 G G G 有最多边数的充要条件是 G ≅ T l , n G\cong T_{l,n} GTl,n

m ( G ) ≤ m ( K n 1 , n 2 , ⋯   , n l ) m(G)\leq m(K_{n_1,n_2,\cdots,n_l}) m(G)m(Kn1,n2,,nl) 表示图 G G G 的边数一定小于等于其完全 l l l 等部图的边数

在这里插入图片描述

(二)、托兰定理

定义4 G G G H H H是两个 n n n阶图,称 G G G度弱于 H H H,如果存在双射 μ : V ( G ) → V ( H ) μ:V(G)→V(H) μV(G)V(H),使得:(这里的 K l + 1 K_{l + 1} Kl+1 是一个完全图)

∀ v ∈ V ( G ) , 有:  d G ( v ) ≤ d H ( μ ( v ) ) \forall v \in V(G),\text{有: }d_G(v)\leq d_H\left(\mu(v)\right) vV(G),dG(v)dH(μ(v))

注意:
(1)若 G G G度弱于 H H H,一定有: m ( G ) ≤ m ( H ) m(G)\leq m(H) m(G)m(H) 但逆不成立!例如:度序列 (1,1,4,2) 与 (3,3,3,3) 没有度弱关系,但是根据握手定理,任然满足 m ( G ) ≤ m ( H ) m(G)\leq m(H) m(G)m(H)
(2)两个图不一定存在度弱关系,如度序列 (1, 2, 2, 7) 与 (3, 1, 4, 6) 就不存在度弱关系

定理4 n n n阶简单图 G G G不包含 K l + 1 K_{l+1} Kl+1,则 G G G度弱于某个完全 l l l 部图 H H H,且若 G G G具有与 H H H 相同的度序列,则:(不作证明)

G ≅ H \begin{array}{cc}G&\cong&H\end{array} GH

定理5(Turán) G G G 是简单图,并且不包含 K l + 1 K_{l+1} Kl+1(即 G G G 的子图中,不包含 K l + 1 K_{l+1} Kl+1 这个完全图),则:

m ( G ) ≤ m ( T l , n ) m\left(G\right)\leq m\left(T_{l,n}\right) m(G)m(Tl,n)

仅当 G ≅ T l , n G\cong T_{l,n} GTl,n 时,有 m ( G ) = m ( T l , n ) m\left(G\right) = m\left(T_{l,n}\right) m(G)=m(Tl,n), m ( T l , n ) = C l 2 ( n l ) 2 . m(T_{l,n})=C_{l}^{2}\left(\frac{n}{l}\right)^{2}. m(Tl,n)=Cl2(ln)2. ☆☆☆☆☆

即 若 G G G 不包含 K l + 1 K_{l+1} Kl+1,即 m ( T l , n ) m\left(T_{l,n}\right) m(Tl,n) G G G 的边数最多的图

托兰定理指出:不含 K l + 1 K_{l+1} Kl+1 的极值图是完全 I I I 几乎等部图。

最短路算法

最短路算法,掌握两个奇度顶点的最优环游方法.

第二章 树

(一)、树的概念与应用

定义1 不含圈的图称为无圈图,树是连通的无圈图。( T 3 T_3 T3 是平凡图,即度为 0)

定义2 称无圈图 G G G为森林。

注:
(1) 树与森林都是单图; (单图即简单图,无重边无环的图)
(2) 树与森林都是偶图。

(二)、树的性质

定理1 每棵非平凡树至少有两片树叶。

定理 2 G G G是树当且仅当 G G G中任意两点都被唯一的路连接。

定理 3 T T T ( n , m ) (n, m) (n,m)树,则: m = n − 1 m = n - 1 m=n1

推论 1 具有 k k k个分支的森林有 n − k n-k nk条边。

定理 4 每个 n n n 阶连通图的边数至少为 n − 1 n-1 n1. ( m = n − 1 m = n - 1 m=n1 是说的树的性质,从而树是最小连通图)

定理5 任意树 T T T的两个不邻接顶点之间添加一条边后,可以得到唯一圈。

非平凡无向图是树的充要条件是 G 是最小连通图

树的度序列问题

定理 6 S = { d 1 , d 2 , … , d n } S=\{d_1,d_2,…,d_n\} S={d1,d2,,dn} n n n 个正整数序列,它们满足: d 1 ≧ d 2 ≧ … ≧ d n d_1≧ d_2 ≧ … ≧ d_n d1d2dn , ∑ d i = 2 ( n − 1 ) ∑d_i=2(n-1) di=2(n1). 则存在一颗树 T T T,其度序列为 S S S。(树 T T T 满足 m = n − 1 m = n - 1 m=n1 ∑ d i = 2 m = 2 ( n − 1 ) ∑d_i = 2m = 2(n - 1) di=2m=2(n1)

在这里插入图片描述在这里插入图片描述


在这里插入图片描述


(一)、生成树的概念与性质

1、生成树的概念

定义 1 G G G的一个生成子图 T T T如果是树,称它为 G G G的一棵生成树;若 T T T为森林,称它为 G G G的一个生成森林。

2、生成树的性质

定理 1 每个连通图至少包含一棵生成树。

推论 G G G ( n , m ) (n, m) (n,m)连通图,则 m ≥ n − 1 m ≥ n-1 mn1

(二)、生成树的计数

1、凯莱递推计数法

定义2 G G G的边 e e e称为被收缩,是指删掉 e e e后,把 e e e的两个端点重合,如此得到的图记为 G . e G.e G.e

τ ( G ) τ(G) τ(G) 表示 G G G 的生成树棵数。

定理 2 (Cayley) e e e G G G的一条边,则有:
τ ( G ) = τ ( G − e ) + τ ( G ∙ e ) \tau\left(G\right)=\tau\left(G-e\right)+\tau\left(G\bullet e\right) τ(G)=τ(Ge)+τ(Ge)

在这里插入图片描述

2、关联矩阵计数法

定义3 n × m n×m n×m 矩阵的一个阶数为 m i n { n , m } min\{n, m\} min{n,m}的子方阵,称为它的一个主子阵;主子阵的行列式称为主子行列式。

定理 3 A m A_m Am 是连通图 G G G 的基本关联矩阵的主子阵,则 A m A_m Am 非奇异的充分必要条件是相应于 A m A_m Am 的列的那些边构成 G G G 的一棵生成树。

该定理给出了求连通图G的所有生成树的方法:
(1) 写出G的关联矩阵,进一步写出基本关联矩阵,记住参考点;
(2) 找出基本关联矩阵的非奇异主子阵,对每个这样的主子阵,画出相应的生成树。

3、矩阵树定理

定理4 (矩阵树定理) 设 G G G 是顶点集合为 V ( G ) = { v 1 , v 2 , … , v n } V(G)=\{v_1, v_2,…, v_n\} V(G)={v1,v2,,vn},的图,设 A = ( a i j ) A=(a_{ij}) A=(aij) G G G的邻接矩阵, C = ( c i j ) C=(c_{ij}) C=(cij) n n n阶方阵,其中:

c i j = { d ( v i ) , i = j − a i j , i ≠ j c_{ij}=\begin{cases}d(v_i),i=j\\-a_{ij},i\neq j\end{cases} cij={d(vi),i=jaij,i=j

定理中的矩阵 C C C又称为图的拉普拉斯矩阵,又可定义为:
C = D ( G ) − A ( G ) \begin{aligned}C&=D\left(G\right)-A\left(G\right)\end{aligned} C=D(G)A(G)

其中, D ( G ) D(G) D(G)是图的度对角矩阵,即主对角元为对应顶点度数,其余元素为0。 A ( G ) A(G) A(G)是图的邻接矩阵。

G G G的生成树棵数为 C C C的任意一个余子式的值。

(三)、回路系统简介

定义 4 T T T是连通图 G G G的一棵生成树,把属于 G G G但不属于 T T T的边称为 G G G关于 T T T的连枝, T T T中的边称为 G G G关于 T T T的树枝。

定义5 T T T是连通图 G G G的一棵生成树,由 G G G的对应于 T T T一条连枝与 T T T中树枝构成的唯一圈 C C C,称为 G G G关于 T T T的一个基本圈或基本回路。若 G G G ( n , m ) (n, m) (n,m)连通图,把 G G G对应于 T T T m − n + 1 m-n+1 mn+1个基本回路称为 G G G对应于 T T T的基本回路组。记为 C f C_f Cf .

(一)、克鲁斯克尔算法

定理1 由克鲁斯克尔算法得到的任何生成树一定是最小生成树。(证明略)

(二)、管梅谷的破圈法

破圈法求最小生成树的求解过程是:从赋权图G的任意圈开始,去掉该圈中权值最大的一条边,称为破圈。不断破圈,直到G中没有圈为止,最后剩下的G的子图为G的最小生成树。

(三)、Prim算法

对于连通赋权图 G G G的任意一个顶点 u u u,选择与点 u u u关联的且权值最小的边作为最小生成树的第一条边 e 1 e_1 e1;

在接下来的边 e 2 , e 3 , … , e n − 1 e_2, e_3 ,…, e_{n-1} e2,e3,,en1 , 在与一条已经选取的边只有一个公共端点的的所有边中,选取权值最小的边。

由Prim算法得到的生成树是最小生成树。(证明略)

(四)、根树简介

定义2: 一棵树 T T T,如果每条边都有一个方向,称这种树为有向树。对于 T T T的顶点 v v v来说,以点 v v v为终点的边数称为点 v v v的入度,以点 v v v为起点的边数称为点 v v v的出度。入度与出度之和称为点 v v v的度。

定义3: 一棵非平凡的有向树 T T T,如果恰有一个顶点的入度为 0,而其余所有顶点的入度为1,这样的的有向树称为根树。其中入度为0的点称为树根,出度为0的点称为树叶,入度为1,出度大于1的点称为内点。又将内点和树根统称为分支点。

定义4: 对于根树 T T T,顶点 v v v到树根的距离称为点 v v v的层数;所有顶点中的层数的最大者称为根树 T T T的树高。

定义5: 对于根树 T T T,若规定了每层顶点的访问次序,这样的根树称为有序树。

定义6: 对于根树 T T T,由点 v v v及其 v v v的后代导出的子图,称为根树的子根树。

定义7: 对于根树 T T T,若每个分支点至多 m m m个儿子,称该根树为 m m m元树;若每个分支点恰有 m m m个儿子,称它为完全 m m m元树。

定理2 在完全 m m m 元树 T T T 中,若树叶数为 t t t , 分支点数为 i i i , 则:

( m − 1 ) i = t − 1 (m - 1) i = t - 1 (m1)i=t1

在这里插入图片描述

3、最优二元树

定义8 T T T是一棵二元树,若 对所有 t t t片树叶赋权值 w i ( 1 ≦ i ≦ t ) w_i(1≦i≦t) wi(1it), 且权值为 w i w_i wi 的树叶层数为 L ( w i ) L(w_i) L(wi), 称:

W ( T ) = ∑ i = 1 t w i L ( w i ) \begin{aligned}W\left(T\right)&=\sum_{i=1}^{t}w_{i}L\left(w_{i}\right)\end{aligned} W(T)=i=1twiL(wi)

为该赋权二元树的权。而在所有赋权为 w i w_i wi的二元树中 W ( T ) W(T) W(T)最小的二元树称为最优二元树。

4、哈夫曼算法

第三章 图的连通性

(⼀)、割边及其性质

定义1 e e e为图 G G G的⼀条割边,如果 ω ( G − e ) > ω ( G ) ω(G − e) > ω(G) ω(Ge)>ω(G)。( ω ( G ) ω(G) ω(G) 表示图 G G G 连通分支的数量, G − e G − e Ge 表示只去掉 e e e 这条边,边两边的点不动)

注: 割边⼜称为图的“桥”。

定理1 e e e 是图 G G G的割边当且仅当 e e e 不在 G G G 的任何圈中。

推论1 e e e 为连通图 G G G 的⼀条边,如果 e e e 含于 G G G 的某圈中,则 G − e G-e Ge 连通。

k 正则二部图:设 ∣ X ∣ = n 1 , ∣ Y ∣ = n 2 |X|=n_1,|Y|=n_2 X=n1Y=n2,有 n 1 = n 2 n_1 = n_2 n1=n2

G G G 的每个顶点都为偶数,则 G G G 没有割边。

k k k 正则二部图( k ≥ 2 k≥2 k2)无割边

注意偶图中, X X X 中的度之和 = Y Y Y 中的度之和,因为每条边,一条边在 X X X 中,一条边在 Y Y Y

(⼆)、割点及其性质

定义2 G G G中,如果 E ( G ) E(G) E(G)可以划分为 两个⾮空⼦集 E 1 E1 E1 E 2 E2 E2, 使 G [ E 1 ] G[E1] G[E1] G [ E 2 ] G[E2] G[E2] 以点 v v v 为公共顶点,称 v v v G G G 的⼀个割点。( E ( G ) E(G) E(G) 表示边集,注意 E 1 E1 E1 E 2 E2 E2 非空,即两个集合存在边,而不是简单的只有点)

定理2 G G G⽆环且⾮平凡,则 v v v G G G的割点,当且仅当 ω ( G − v ) > ω ( G ) ω(G − v) >ω(G) ω(Gv)>ω(G)

× × × \color{red}××× ××× 定理3 v v v 是树 T T T 的顶点,则 v v v 是割点,当且仅当 v v v 是树的分⽀点。(内点和树根统称为分支点,而树根不能作为割点)

定理3 v v v 是树 T T T 的顶点,则 v v v 是割点,当且仅当 d ( v ) > 1 d(v) > 1 d(v)>1

定理4 v v v是⽆环连通图 G G G的⼀个顶点,则 v v v G G G的割点,当且仅当 V ( G − v ) V(G-v) V(Gv)可以划分为两个⾮空⼦集 V 1 V_1 V1 V 2 V_2 V2, 使得对任意 x ∈ V 1 , y ∈ V 2 x ∈V_1, y ∈V_2 xV1,yV2, 点 v v v x y x y xy路上。

证明 e 是否为割边或者 v 是否为割点,通过证明去掉 e 或 v 是否连通来证明

注:割点有两类,一类是自环,一类是破坏连通性的点

K 2 K_2 K2 有割边无割点
在这里插入图片描述

(三)、块及其性质

定义3 没有割点的连通图称为是⼀个块图,简称 G G G 的⼀个⼦图 B B B称为是 G G G的⼀个块,如果(1)它本身是块;(2)若没有真包含 B B B G G G的块存在。(即子块 B B B 不能再产生子块 B B B 的子块)

G G G 是块满足如下:

  1. 仅有一条边的块,要么是割边,要么是环;
  2. 仅有一个点的块,要么是孤立点,要么是环;
  3. 至少有两个点的块无环;
  4. 至少有三个点的块无割边,无自环,

定理5 ∣ V ( G ) ∣ ≥ 3 |V(G)| ≥ 3 V(G)3, 则 G G G 是块,当且仅当 G G G⽆环且任意两顶点位于同⼀圈上。

定理6 v v v是图 G G G的割点当且仅当 v v v⾄少属于 G G G的两个不同的块。

在这里插入图片描述

在这里插入图片描述

(一)、连通度的概念与性质

定义1 给定连通图 G G G,设 V ′ ⊆ V ( G ) V^{\prime}\subseteq V(G) VV(G),若 G − V ′ G -V^{'} GV 不连通,称 V ′ V^{'} V G G G 的一个点割集,含有 k k k 个顶点的点割集称为 k k k 顶点割。 G G G 中点数最少的顶点割称为最小顶点割。

定义2 G G G中,若存在顶点割,称 G G G的最小顶点割的顶点数称为 G G G的点连通度;否则称 n − 1 n-1 n1为其点连通度。 G G G的点连通度记为 κ ( G ) \kappa(G) κ(G), 简记为 κ \kappa κ。若 G G G不连通, κ ( G ) = 0 \kappa(G)=0 κ(G)=0

连通度也可描述为 “删去图中 k k k( k k k 可为 0 0 0) 个点,使图不连通或成为平凡图的最小 k k k 值”

  • 非平凡树的连通度均为 1
  • 完全图没有顶点割,以完全图为生成子图的图也没有顶点割(实际上完全图的顶点割为删除完全图中的所有顶点,只留一个,实现不连通)
  • 单个割点可以作为 1 顶点割
  • 当且仅当 κ ≥ 1 \kappa ≥ 1 κ1,图连通

定义3 (1)设 G G G 为连通图,称使 G − E ′ G - E{'} GE 不连通的 G G G 的边子集 E ′ E{'} E G G G 的边割,含有 k k k 条边的边割为 k k k 边割。边数最少的边割称为最小边割

  • 注: k k k 连通:要想破坏连通性,至少要删去 k k k 个点,
  • 注: K 2 K_2 K2 连通、无割点,但连通度为 1.
  • 边连通度可描述为“使图不连通或成为平凡图,最少需要删去的边数”

(2) 设 G G G 是非平凡连通图,若 M M M G G G 的最小边割集,则称 ∣ M ∣ |M| M G G G 的边连通度。边连通度记为 λ ( G ) λ(G) λ(G) ,简记为 λ λ λ。若 G G G 不连通或 G G G 是平凡图,则定义 λ ( G ) = 0 λ(G) =0 λ(G)=0

定义4 G G G中,若 κ ( G ) ≧ k \kappa(G)≧ k κ(G)k, 称 G G G k k k连通的或k连通图;若 λ ( G ) ≧ k λ(G)≧k λ(G)k,称 G G G k k k边连通的或 k 边连通图。

k 连通一定是 k 边连通的.

图 G 的顶点数为 n 且 7 连通,则其边数至少为 ⌈ 7 n / 2 ⌉ ⌈7n/2⌉ 7n/2 (7 连通,图 G 最小度为 7).

(1) κ ( K n ) = n − 1 , ( 2 ) κ ( C n ) = 2 \kappa(K_n)=n-1,(2)\kappa(C_n)=2 κ(Kn)=n1,(2)κ(Cn)=2 其中 C n C_n Cn 为 n 圈, n ≥ 3 n\geq3 n3.

(1) λ ( K n ) = n − 1 , ( 2 ) λ ( C n ) = 2 \lambda\left(K_n\right)=n-1,(2)\lambda\left(C_n\right)=2 λ(Kn)=n1,(2)λ(Cn)=2 其中 C n C_n Cn n n n 圈 , n ≥ 2 n\geq2 n2.

在这里插入图片描述

在这里插入图片描述在这里插入图片描述在这里插入图片描述

2、连通度的性质

定理1 (惠特尼1932) 对任意图 G G G,有:
κ ( G ) ≤ λ ( G ) ≤ δ ( G ) \kappa(G)\leq\lambda(G)\leq\delta(G) κ(G)λ(G)δ(G)

定理2 G G G ( n , m ) (n, m) (n,m)连通图,则:

κ ( G ) ≤ ⌊ 2 m n ⌋ \kappa(G)\leq\left\lfloor\frac{2m}n\right\rfloor κ(G)n2m

定理3 G G G ( n , m ) (n, m) (n,m)单图,若 δ ( G ) ≥ ⌊ n 2 ⌋ \delta(G)\geq\left\lfloor\frac{\mathrm{n}}{2}\right\rfloor δ(G)2n,则 G G G连通。

定理4 G G G ( n , m ) (n, m) (n,m) 单图,若对任意正整数 k k k ,有: δ ( G ) ≥ n + k − 2 2 \delta\left(G\right)\geq\frac{n+k-2}2 δ(G)2n+k2 G G G k k k 连通的。

定理5 G G G n n n阶单图,若 δ ( G ) ≥ ⌊ n 2 ⌋ \delta\left(G\right)\geq\left\lfloor\frac n2\right\rfloor δ(G)2n 则有: λ ( G ) = δ ( G ) \lambda(G)=\delta(G) λ(G)=δ(G)

(二) Menger 定理

定理1 (敏格尔1902—1985) (1) 设 x x x y y y是图 G G G中的两个不相邻点,则 G G G中分离点 x x x y y y的最少点数等于独立的 ( x , y ) (x, y) (x,y)路的最大数目;

定理3 (惠特尼1932) 一个非平凡的图 G G G k ( k ≧ 2 ) k (k≧2) k(k2)边连通的,当且仅当 G G G的任意两个顶点间至少存在 k k k条边不重的 ( u , v ) (u ,v) (u,v)路。

推论1 k ≥ 2 k≥ 2 k2,图 G G G k k k 连通的当且仅当 G G G 至少有 k + 1 k + 1 k+1 个点并且 G G G 中任意两个不同顶点间均存在 k k k 条内部不想交的路; G G G k ( k ≧ 2 ) k (k≧2) k(k2) 连通的,当且仅当 G G G 的任意两个顶点间至少存在 k k k 条内点不交的 ( u , v ) (u ,v) (u,v) 路。

推论 对于一个阶至少为 3 3 3的无环图 G G G,下面三个命题等价。

(1) G是2连通的;
(2) G中任意两点位于同一个圈上;
(3) G无孤立点,且任意两条边在同一个圈上。

宽直径:
d 1 ( C n ) = n 2 d_1(C_n) = \frac{n}{2} d1(Cn)=2n 的下界
d 2 ( C n ) = n − 1 d_2(C_n) = n - 1 d2(Cn)=n1

d 1 ( K n ) = 1 d_1(K_n) = 1 d1(Kn)=1
d w ( K n ) = 2 ( 1 ≤ w ≤ n − 1 ) d_w(K_n) = 2 (1 ≤ w ≤ n - 1) dw(Kn)=2(1wn1)

第四章 欧拉图与哈密尔顿图(Euler 图与 Hamilton 图)

1、欧拉图的概念

经过连通图 G G G 的每条边的迹被称为 Euler 迹(欧拉迹)(欧拉迹不要求回到原点,经过所有的点与边)

定义1 对于连通图 G G G,如果 G G G中存在经过每条边的 闭迹(即 Euler 闭迹),则称 G G G为欧拉图,简称 G G G E E E图。欧拉闭迹又称为g游,或欧拉回路。(欧拉图是含有一条欧拉闭迹,需要回到原点的迹,注意与欧拉迹区分,欧拉迹只需要经过所有的点与边。但是不能重复经过)

一笔画问题: 画一个图形,在笔不离纸,每条边只画一次而不允许重复的情况下,画完该图。本质上就是一个图是否存在欧拉迹的问题 (在原图上添加1笔,可使其变为欧拉图。)

三笔画问题: 在原图上添加三笔,可使其变为欧拉图。

2、欧拉图的性质

(一)、欧拉图及其性质

定理1 下列陈述对于非平凡连通图 G G G是等价的:
(1) G G G 是欧拉图;
(2) G G G 的顶点度数为偶数;
(3) G G G 的边集合能划分为圈。

推论1 连通图 G G G是欧拉图当且仅当 G G G的顶点度数为偶数。

推论2 连通非欧拉图 G G G存在欧拉迹当且仅当 G G G中只有两个顶点度数为奇数。(最多两个奇点也是对的)
在这里插入图片描述

例2 证明: G G G H H H是欧拉图,则 G × H G× H G×H 是欧拉图。

欧拉图的欧拉环游不唯一

欧拉图一定不含有割边,但可能有割点

K m , n K_{m,n} Km,n(m, n 均为偶数),则欧拉环游中至少包含 mn 条边.

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

(二)、Fleury(弗勒里)算法:除非万不得已,否走不走割边

(三)、中国邮路问题

问题: 邮递员派信的街道是边赋权连通图。从邮局出发,每条街道至少行走一次,再回邮局。如何行走,使其行走的环游路程最短?

在一个赋权图中,环游 v 0 e 1 v 1 . . . e n v 0 v_0e_1v_1...e_nv_0 v0e1v1...env0 权定义为 ∑ i = 1 n w ( e i ) \sum_{i=1}^n w(e_i) i=1nw(ei)(边允许重复),则中国邮递员问题就是在具有非负权的赋权连通图中找出一条最小权的环游,这种环游称为最优环游

G G G 是 Euler 图,则任意的 Euler 环游都是最优环游

解决最优环游的方法如下:
(1) 若图 G G G是一个欧拉图,则找出 G G G的欧拉回路即可。
(2) 对一般图,其解法为:添加重复边以使 G G G成为欧拉图 G ∗ G^* G,并使添加的重复边的边权之和为最小,再求 G ∗ G^* G的欧拉回路。

如何确定添加的重复边的边权之和最小呢?管梅谷给出如下定理:

结合 定理1 G G G 是欧拉图,当且仅当 G G G 的每个点的度是偶数。

因此在添加重复边时,先找出待求图 G G G 的所有奇度顶点,通过添加边使其所有奇度顶点变为偶数,然后判断每个圈,如果圈中添加的边的总权值超过该圈总权值的一半,则交替圈上填加了重复边和没添加重复边的边。

(一)、哈密尔顿图的概念

定义1 如果经过图 G G G的每个顶点恰好一次后能够回到出发点,称这样的圈为哈密尔顿圈,存在 Hamilton 圈的图称为 Hamilton 图,简称 H H H图。

(二)、性质与判定

☆☆☆☆ 定理1 (必要条件) 若 G G G H H H图,则对 V ( G ) V(G) V(G)的任一非空顶点子集 S S S,有:
ω ( G − S ) ≤ ∣ S ∣ \omega(G-S)\leq\left|S\right| ω(GS)S

注意: 满足定理1不等式的图不一定是 H H H图。用此定理判断非哈密尔顿图

定理2 (充分条件) 对于 n ≧ 3 n≧3 n3的单图 G G G,如果 G G G中有: δ ( G ) ≥ n 2 \delta(G)\geq\frac n2 δ(G)2n 那么 G G G H H H图。

充分条件而不是必要条件,说明, δ ( G ) ≥ n 2 \delta(G)\geq\frac n2 δ(G)2n 一定是 H H H 图,而 H H H 图,不一定满足 δ ( G ) ≥ n 2 \delta(G)\geq\frac n2 δ(G)2n

定理3 (充分条件) 对于 n ≧ 3 n≧3 n3的单图 G G G,如果 G G G中的任意两个不相邻顶点 u u u v v v,有: d ( u ) + d ( v ) ≥ n d(u)+d(v)\geq n d(u)+d(v)n 那么, G G G H H H图。

(2) 该定理的条件是紧的。 例如:设 G G G是由 K k + 1 K_{k+1} Kk+1的一个顶点和另一个 K k + 1 K_{k+1} Kk+1的一个顶点重合得到的图,那么对于 G G G 的任意两个不相邻顶点 u u u v v v,有: d ( u ) + d ( v ) = 2 k = n − 1 d(u)+d(v)=2k=n-1 d(u)+d(v)=2k=n1 G G G是非 H H H图。

引理1(充要条件) 对于单图 G G G,如果 G G G中有两个不相邻顶点 u u u v v v,满足: d ( u ) + d ( v ) ≥ n d\left(u\right)+d\left(v\right)\geq n d(u)+d(v)n 那么 G G G H H H图当且仅当 G + u v G + u v G+uv H H H图。

定义3 n n n阶单图中,若对 d ( u ) + d ( v ) ≧ n d (u) + d (v) ≧n d(u)+d(v)n 的任意一对顶点 u u u v v v,均有 u    a d j    v u ~~adj~~ v u  adj  v , 则称 G G G闭图。

引理2 G 1 G_1 G1 G 2 G_2 G2是同一个点集 V V V的两个闭图,则 G = G 1 ∩ G 2 G=G_1∩G_2 G=G1G2是闭图。(了解即可,不要求掌握)

定义4 G ^ \hat{G} G^ 是图 G G G 的闭包,如果它是包含 G G G的极小闭图。

引理3 G G G的闭包是唯一的。(证明略)

定理4 (帮迪——闭包定理) 图 G G G H H H图当且仅当它的闭包 G ^ \hat{G} G^ H H H图。

注意: 顶点 n ≥ 3 的完全图都是 H 图。怎么都有一条 H 圈,经过所有顶点

推论1: G G G n ≧ 3 n≧3 n3的单图,若 G G G的闭包是完全图,则 G G G H H H图。

由闭包定理也可以推出Dirac和Ore定理:

推论2: G G G n ≧ 3 n≧3 n3的单图。若 δ ( G ) ≧ n / 2 δ(G)≧n/2 δ(G)n/2, 则 G G G H H H(Dirac定理); 上面有详细证明,下面用闭包定理证明

推论3: G G G n ≧ 3 n≧3 n3的单图。若对于 G G G中任意不相邻顶点 u u u v v v,都有 d ( u ) + d ( v ) ≧ n d(u)+d(v)≧n d(u)+d(v)n, 则 G G G H H H图.(Ore定理)上面有详细证明,下面用闭包定理证明

☆☆☆☆☆定理5(Chvátal——度序列判定法) 设简单图 G G G的度序列是( d 1 , d 2 , … , d n d_1, d_2,…, d_n d1,d2,,dn), 这里, d 1 ≦ d 2 ≦ … ≦ d n d_1≦d_2≦…≦d_n d1d2dn, 并且 n ≧ 3 n≧3 n3. 若对任意的 m < n / 2 m<n/2 m<n/2, 或有 d m > m d_m>m dm>m, 或有 d n − m ≧ n − m d_{n-m} ≧ n-m dnmnm, 则 G G G H H H图。

定理5的逆否命题: 设简单图 G G G的度序列是( d 1 , d 2 , … , d n d_1,d_2,…,d_n d1,d2,,dn), 这里, d 1 ≦ d 2 ≦ … ≦ d n d_1≦d_2≦…≦d_n d1d2dn,并且 n ≧ 3 n≧3 n3. 若存在 m < n / 2 m<n/2 m<n/2, 有 d m ≤ m d_m ≤ m dmm ,且有 d n − m < n − m d_{n - m} < n-m dnm<nm, 则 G G G是非 H H H图。

H 图不能有割边但是可以有割点,比如自环图就存在割点

在这里插入图片描述

(一)、度极大非哈密尔顿图

结论: G 1 G_1 G1 度弱于 G 2 G_2 G2, 则 m ( G 1 ) ≤ m ( G 2 ) m(G_1)≤m(G_2) m(G1)m(G2). (握手定理可以说明)

定义1 G G G称为度极大非 H H H图,如果它的度不弱于其它非 H H H图。

定义2 对于 1 ≦ m < n / 2 , C m , n 1≦ m <n/2 , C_{m,n} 1m<n/2,Cm,n 图定义为: C m , n = K m ∨ ( K ˉ m + K n − 2 m ) C_{m,n}=K_m\vee(\bar{K}_m+K_{n-2m}) Cm,n=Km(Kˉm+Kn2m)

对于 1 ≤ m < n / 2 , C m , n \leq m<n/2,C m,n m<n/2,Cm,n 图:对 ∀ S ⊆ X \forall S\subseteq X SX ,有 ∣ N ( S ) ∣ ≥ ∣ S ∣ \left|N\left(S\right)\right|\geq\left|S\right| N(S)S

3、 C m , n C_{m,n} Cm,n 的性质

引理1 对于 1 ≦ m < n / 2 1≦m<n/2 1m<n/2的图 C m , n C_{m,n} Cm,n是非 H H H图。

定理1 (Chvátal,1972) G G G n ≧ 3 n≧3 n3的非 H H H单图,则 G G G度弱于某个 C m , n C_{m,n} Cm,n图。(Chvátal 还证明了度序列判定定理)(这里的度弱于某个 C m , n C_{m,n} Cm,n图,是因为下面证明中是存在 m < n / 2 m < n/2 m<n/2

(1) 定理1 刻画了非 H H H 单图的特征:从度序列角度看, C m , n C_{m,n} Cm,n 图族中某个图是某个 n n n 阶非 H H H 单图的极图。

(2) 定理的条件是充分条件而非必要条件。

(3) 如果 n n n阶单图 G G G度优于所有的 C m , n C_{m,n} Cm,n图族,则 G G G H H H图。

推论(充分条件) G G G n n n阶单图。若 n ≧ 3 n≧3 n3 ∣ E ( G ) ∣ > ( n − 1 2 ) + 1 \left.\left|E\left(G\right.\right)\right|>\binom{n-1}2+1 E(G)>(2n1)+1 , 则 G G G H H H图;并且,具有 n n n个顶点和 ( n − 1 2 ) + 1 \left.\left(\begin{array}{c}n-1\\2\end{array}\right.\right)+1 (n12)+1 条边的非 H H H图只有 C 1 , n C_{1,n} C1,n以及当 n = 5 n = 5 n=5 时,还有 C 2 , 5 C_{2,5} C2,5.

注: 推论的条件是充分而非必要的。

彼得森图不是 H H H 图!!

(二)、TSP问题

问题: 一售货员要到若干城市去售货,每座城市只经历一次,问如何安排行走路线,使其行走的总路程最短

1、边交换技术(近似解)

2、最优(小) H H H圈的下界(期末考过 ☆☆☆☆☆)

可以通过如下方法求出最优 H H H圈的一个下界:

  • (1) 在 G G G中删掉一点 v v v(任意的)得图 G 1 G_1 G1;
  • (2) 在图 G 1 G_1 G1中求出一棵最小生成树 T T T;
  • (3) 在 v v v的关联边中选出两条权值最小者 e 1 e_1 e1 e 2 e_2 e2.

H H H G G G的最优圈,则:
W ( H ) ≥ W ( T ) + W ( e 1 ) + W ( e 2 ) W\left(H\right)\geq W\left(T\right)+W\left(e_{1}\right)+W\left(e_{2}\right) W(H)W(T)+W(e1)+W(e2)

(一)、超 H H H图与超 H H H

定义1 若图 G G G是非 H H H图,但对于 G G G中任意点 v v v, 都有 G − v G-v Gv H H H图,则称 G G G是超 H H H图。

定理1 彼得森(Peterson)图是超 H H H图。

定义2 G G G中没有 H H H路,但是对 G G G中任意点 v v v G − v G-v Gv存在 H H H路,则称 G G G是超可迹的。

定理2 Thomassen图是超可迹图。

(二)、 E E E 图和 H H H 图的关系(重点)

1、线图概念

定义3 G G G是图, G G G的线图 L ( G ) L(G) L(G)定义为:(线图 L ( G ) L(G) L(G)的顶点集合正好等于原图 G G G的边集合,且两条边属于线图当且仅当这两条边在原图中邻接)

V ( L ( G ) ) = E ( G ) V(L(G))=E(G) V(L(G))=E(G)

( e 1 , e 2 ) ∈ E ( L ( G ) ) ⇔ 在 G 中有:边 e 1 与 e 2 邻接 (e_1,e_2)\in E(L(G))\Leftrightarrow\text{在}G\text{中有:边}e_1\text{与}e_2\text{邻接} (e1,e2)E(L(G))G中有:e1e2邻接

实际上就是将边的邻接转换为点的邻接,是因为研究点好研究一些。

特别地,定义 G G G n n n次迭线图 L n ( G ) L^n(G) Ln(G) 为: L n ( G ) = L ( L n − 1 ( G ) ) L^n(G){=}L(L^{n-1}(G)) Ln(G)=L(Ln1(G))

2、线图的性质

(1) 线图 L ( G ) L(G) L(G)顶点数等于 G G G的边数;若 e = u v e=uv e=uv G G G的边,则 e e e作为 L ( G ) L(G) L(G)的顶点度数为: d ( e ) = d ( u ) + d ( v ) − 2 d(e)=d(u)+d(v)-2 d(e)=d(u)+d(v)2 .

(2) 若 G = ( n , m ) G=(n, m) G=(n,m), 则线图 L ( G ) L(G) L(G) 边数为:
m ( E ( L ( G ) ) = − m + 1 2 ∑ v ∈ V ( G ) d 2 ( v ) m(E(L(G))=-m+\frac12\sum_{v\in V(G)}d^2(v) m(E(L(G))=m+21vV(G)d2(v)

(3) 一个图同构于它的线图,当且仅当它是圈。

(4) 若图G和 G 1 G_1 G1有同构的线图,则除了一个是 K 3 K_3 K3而另一个是 K 1 , 3 K_{1,3} K1,3外, G G G G 1 G_1 G1同构。(证明比较复杂)

定义4 S n S_n Sn是图 G G G n n n次细分图,是指将 G G G的每条边中都插入 n n n 2 2 2度顶点。

定理3
(1)若G是E图,则L(G) 既是E图又是H图。
(2)若G是H图,则L(G)是H图。

定理4 一个图 G G G E E E 图的充要条件是 L 3 ( G ) L_3(G) L3(G) H H H

定理5 (Chartarand)若 G G G n n n个点的非平凡连通图,且不是一条路,则对所有 m ≥ n − 3 , L m ( G ) m≥n-3,L_m(G) mn3Lm(G) H H H 图。

第五章 匹配与因子分解

(一)、图的匹配与贝尔热定理

(1)、匹配 M M M — 如果 M M M 是图 G G G 的边子集(不含环),且 M M M 中的任意两条边没有共同顶点(即不相邻),则称 M M M G G G 的一个匹配或对集或边独立集。

如果 G G G 中顶点 v v v G G G 的匹配 M M M 中某条边的端点,称它为 M M M 饱和点,否则为 M M M 非饱和点。(意思就是: G G G 中顶点 v v v M M M 中就是饱和点,只在 G G G ,不在 M M M 中,就是非饱和点)

(2)、最大匹配 M M M— 如果 M M M 是图 G G G 的包含边数最多的匹配,称 M M M G G G 的一个最大匹配。特别是,若最大匹配饱和了 G G G 的所有顶点,称它为 G G G 的一个完美匹配

注: 1、一个图 G G G不一定存在完美匹配;
2、一个图 G G G的完美匹配若存在,不一定唯一;
3、一个图 G G G的最大匹配不一定唯一。

(3)、 M M M 交错路— 如果 M M M 是图 G G G 的匹配, G G G 中一条由 M M M 中的边和非 M M M 中的边交错形成的路,称为 G G G 中的一条 M M M 交错路。特别地,若 M M M 交错路的起点与终点是 M M M 非饱和点,称这种 M M M 交错路为 M M M 可扩路。

2、贝尔热定理

定理1 (贝尔热,1957) G G G 的匹配 M M M 是最大匹配,当且仅当 G G G 不包含 M M M 可扩路。

(二)、偶图的匹配与覆盖

2、偶图匹配存在性判定 —— Hall定理

对于图 G G G 的任一顶点子集 S S S,所谓 G G G S S S邻集(或邻域) 是指与 S S S 的顶点相邻的所有顶点的集,记为 N G ( S ) N_G(S) NG(S),简记为 N ( S ) N(S) N(S)

定理2 (Hall定理) G = ( X , Y ) G=(X, Y) G=(X,Y)是偶图,则 G G G存在饱和 X X X每个顶点的匹配的充要条件是:
对  ∀ S ⊆ X , 有  ∣ N ( S ) ∣ ≥ ∣ S ∣ \text{对 }\forall S\subseteq X,\text{有 }|N(S)|\geq|S|  SX, N(S)S

推论: G G G k ( k > 0 ) k (k>0) k(k>0) 正则偶图,则 G G G 存在完美匹配。

每个 k k k 方体都有完美匹配 (k大于等于2),因为每个 k k k 方体都是 k k k 正则偶图

K 2 n K_{2n} K2n K n , n K_{n,n} Kn,n 中不同的完美匹配的个数分别是 (2n − 1)!!,n!.

3、点覆盖与哥尼定理

(1)、图的点覆盖概念与性质

定义1: 图的点覆盖 —— G G G 的一个顶点子集 K K K 称为 G G G 的一个点覆盖,如果 G G G 的每条边都至少有一个端点在 K K K 中。 G G G 的一个包含点数最少的点覆盖称为 G G G 的最小点覆盖,其包含的点数称为 G G G 的覆盖数,记为 α ( G ) α(G) α(G).

K K K G G G 的覆盖, M M M G G G 的匹配,则 K K K 至少包含 M M M 中每条边的一个端点,于是,对任何匹配 M M M 和任何覆盖 K K K,均有 ∣ M ∣ ≤ ∣ K ∣ |M| ≤ |K| MK

定理2 M M M G G G 的匹配, K K K G G G 的覆盖,若 ∣ M ∣ = ∣ K ∣ |M|=|K| M=K, 则 M M M 是最大匹配,而 G G G 是最小覆盖。

(2)、偶图的点覆盖与偶图匹配间的关系——哥尼定理

定理2 (哥尼,1931) 在偶图中,最大匹配的边数等于最小覆盖的顶点数。(偶图中才成立,一般图中不一定成立)

定理4 (托特定理 Tutte,1947) G G G有完美匹配当且仅当对 V V V的任意非空真子集 S S S, 有:
o ( G − S ) ≤ ∣ S ∣ o\left(G-S\right)\leq\left|S\right| o(GS)S

注: o ( G − S ) o (G-S) o(GS) 表示奇分支数目,即 G − S G-S GS 的连通分支中的顶点数为奇数的个数。(一定要对所有非空真子集 S S S做检验,才能得到完美匹配的结论)

推论 (彼得森定理) 没有割边的 3 3 3正则图存在完美匹配。(重点掌握)

彼得森图满足是没有割边的 3 正则图,因此它有完美匹配

注: 有割边的 3 正则图不一定就没有完美匹配 (有可能有,有可能没有).
彼得森图有完美匹配,3正则哈密尔顿图存在完美匹配

在这里插入图片描述

(一)、图的一因子分解

所谓一个图 G G G的因子 G i G_i Gi,是指至少包含 G G G的一条边的生成子图。
所谓一个图 G G G的因子分解,是指把图 G G G分解为若干个边不重的因子之并。
所谓一个图 G G G n n n因子,是指图 G G G n n n度正则因子。(这个图 G G G 中,每个顶点的度为 n n n

如果一个图 G G G能够分解为若干 n n n因子之并,称 G G G是可 n n n因子分解的( n n n可因子化的, n n n因子分解)。

定理1 K 2 n K_{2n} K2n 可一因子分解。

定理15: K 2 n K_{2n} K2n 可一因子分解,分解个数 ( 2 n − 1 ) ! ! (2n − 1)!! (2n1)!!

定理 7 任一正则偶图是 1-可因子化的。(正则偶图存在完美匹配,即1-因子,从不断减去完美匹配的方式就可得到正则偶图的1-因子分解)

定理 2 具有 H H H圈的三正则图可一因子分解。

定理 3 若三正则图有割边,则它不能一因子分解。

一个完全图是一因子可分解的,当且仅当它有偶数个点

在这里插入图片描述
有割边一定没有 H 圈

(二)、图的二因子分解

定理10 K 2 n + 1 K_{2n + 1} K2n+1 n n n H H H 圈的和

定理4 K 2 n + 1 K_{2n+1} K2n+1 2 2 2因子分解。

定理5 K 2 n K_{2n} K2n 可分解为一个 1 1 1 因子和 n − 1 n-1 n1 2 2 2 因子之和。

1 度正则图本身是 1 因子,2 度正则图是一个 2 因子,若 2 度正则图的每一个支是一个偶圈,因为偶圈能表示为两个 1 因子的和,故它也是 1 因子。尽管许多 3 度正则图没有 1 因子,但是若 1 个 3 度正则图含有一个 1因子,它一定也有一个 2 因子。因此可得如下定理

定理6 每个没有割边的3正则图是一个1因子和1个2因子之和。

Peterson 给出了一个没有割边且不是三个 1 因子的和的 3 正则图,它是一个 1 因子和一个 2 因子的和。 五边形和五角形一起构成一个 2 因子,而联接五边形和五角星形的五条边构成一个 1 因子,Peterson 也得到了可以将一个图分解为 2 因子的一个准则

定理7 一个连通图可2因子分解当且仅当它是偶数度正则图。

2 k 2k 2k 正则偶图可 2 2 2 因子分解.

定理8 G G G 的荫度为: σ ( G ) = max ⁡ s ⌈ m s s − 1 ⌉ \sigma(G)=\max_s\left\lceil\frac {m_s}{s-1}\right\rceil σ(G)=smaxs1ms

其中 s s s G G G 的子图 H s Hs Hs 的顶点数,而: m s = max ⁡ s { E ( H s ) } m_s=\max_s\left\{E(H_s)\right\} ms=smax{E(Hs)}

在这里插入图片描述

(一)、匈牙利算法

(2) 、基本思想
从任一初始匹配 M 0 M_0 M0 出发,若 M 0 M_0 M0 饱和 X X X 中的每个点,则 M 0 M_0 M0 就是所需的匹配,若不是,则在 X X X 中找一个 M 0 M_0 M0 非饱和点 u u u,且系统地寻找一条以 u u u 为起点的 M M M 可扩路,如果这条路 P P P 存在,这时 M 1 = M 0 Δ E ( P ) M_1=M_0ΔE(P) M1=M0ΔE(P) 就是比 M 0 M_0 M0更大的匹配(近似于迭代思想),因而饱和 X X X 中更多的点,重复这个过程。

定义1 G = ( X , Y ) G=(X, Y) G=(X,Y), M M M G G G 的匹配, u u u M M M 非饱和点。称树 H H H G G G 的扎根于点 u u u M M M 交错树, 如果:

  1. u ∈ V ( H ) u ∈V(H) uV(H)
  2. 对任意 v ∈ V ( H ) v ∈V(H) vV(H) (即 H H H 中的每个顶点 u u u), H H H 中唯一的 ( u , v ) (u, v) (u,v) 路是 M M M 交错路。

M可扩路寻找总结如下:

2、偶图中寻找最大匹配

问题: 在一般偶图上求最大匹配 M M M.

分析: 使用匈牙利算法求完美匹配时,当在扎根于 M M M非饱和点 0 0 0 u的交错树上有 ∣ N ( S ) ∣ < ∣ S ∣ |N(S)|<|S| N(S)<S时,由Hall定理,算法停止。要求出最大匹配,应该继续检查 X − S X-S XS是否为空,如果不为空,则检查是否在其上有 M M M非饱和点。一直到所有 M M M 非饱和点均没有 M M M 可扩路才停止。

(二)、最优匹配算法 —— 库恩算法(Kuhn - Munkres 算法)会用就行

G = ( X , Y ) G=(X, Y) G=(X,Y)是边赋权 完全偶图,且 X = { x 1 , x 2 , … , x n } , Y = { y 1 , y 2 , . . . , y n } , w i j = w ( x i y j ) X=\{x_1,x_2,\ldots,x_n\}, {Y=\{y_1,y_2,...,y_n\},w_{ij}=w(x_iy_j)} X={x1,x2,,xn},Y={y1,y2,...,yn},wij=w(xiyj) G G G中求出一个具有最大权值的完美匹配,这个完美匹配就称为 最优匹配

定义2 G = ( X , Y ) G=(X, Y) G=(X,Y), 若在顶点集 X ∪ Y X \cup Y XY 上的实值函数 l l l 适合下述条件 , 对任意的 x ∈ X , y ∈ Y x ∈X, y ∈Y xX,yY,有:
l ( x ) + l ( y ) ≥ w ( x y ) l(x)+l(y)\geq w(xy) l(x)+l(y)w(xy)

称函数 l l l 是赋权完全偶图 G G G的可行顶点标号。

可行顶点标号是这样的顶点标号,它使得每条边的两端点的标号之和至少与这条边的权一样大。

对于任意的赋权完全偶图 G G G,均存在 G G G的可行顶点标号:
{ l ( x ) = max ⁡ y ∈ Y w ( x y ) , 若 x ∈ X , l ( y ) = 0 , 若 y ∈ Y . \begin{cases}l(x)=\max_{y\in Y}w(xy),\text{若}x\in X,\\l(y)=0,\text{若}y\in Y.&\end{cases} {l(x)=maxyYw(xy),xX,l(y)=0,yY.

公式含义为:对于 X X X 点集中的点 x x x,与 x x x 相连接的所有 Y Y Y 中的点 y y y,取边权 w ( x y ) w(xy) w(xy) 最大的值作为 l ( x ) l(x) l(x), 偶图 Y Y Y 中的点,所有点 y y y 标号为 0,则 l l l G G G的一个可行顶点标号。(上面这个标号方式是比较规范的一种,但是还有其他的标号方式)

定义3 l l l 是赋权完全偶图 G = ( X , Y ) G=(X, Y) G=(X,Y)的可行顶点标号,令:
E l = { x y ∈ E ( G ) ∣ l ( x ) + l ( y ) = w ( x y ) } E_l=\left\{xy\in E\left(G\right){\large{|}}l(x)+l(y)=w(xy)\right\} El={xyE(G)l(x)+l(y)=w(xy)}
G l = G [ E l ] G_l = G [E_l] Gl=G[El] G G G的对应于 l l l 的相等子图。(具有边集 E l E_l El G G G 的生成子图)

定理15 l l l 是赋权完全偶图 G = ( X , Y ) G=(X, Y) G=(X,Y)的可行顶点标号,若相等子图 G l G_l Gl有完美匹配 M ∗ M^* M, 则 M ∗ M^* M G G G的最优匹配。

Kuhn 采用顶点标号修改策略,找到了求最优匹配好算法,介绍如下:(只掌握怎么做,不用掌握为什么这么做)

在这里插入图片描述
在这里插入图片描述

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值