from PIL import Image
import requests
import streamlit as st
import torch
@st.cache()
def load_demo_image():
img_url = (
"https://storage.googleapis.com/sfr-vision-language-research/BLIP/demo.jpg"
)
raw_image = Image.open(requests.get(img_url, stream=True).raw).convert("RGB")
return raw_image
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cache_root = "/export/home/.cache/lavis/"
PIL中的Image库可以对图像进行操作。
requests用于发起网页请求
streamlit用于傻瓜式构建python web可视化网页。
image-url是用于进行示例的demo图片,如下所示,是一只狗和一个女人在沙滩上玩耍
raw_image这行代码使用Image库加载该图像,比较复杂,以下是gpt4的解释
这行代码是用于从网络上加载一张图片并将其转换为RGB格式的Python代码。具体步骤如下:
-
requests.get(img_url, stream=True)
: 这部分代码使用requests
库从网络上获取一个图片。img_url
是图片的网址。stream=True
参数表示以流的形式下载,这对于下载大文件很有用,因为它不会立即将整个文件加载到内存中。 -
.raw
: 这是requests.Response
对象的一个属性,它提供了原始的响应内容(在这个情况下是图片的数据)。 -
Image.open(...)
: 这里使用了Pillow库(通常以PIL
或Image
导入)来打开从网络获取的原始图片数据。 -
.convert("RGB")
: 这个方法将图片转换为RGB格式。RGB代表红色、绿色和蓝色,这是一种常用的颜色模式,适用于屏幕显示。这个转换确保图片在不同的环境下(尤其是在不同类型的设备上)保持一致的外观。
综上所述,这行代码的作用是从给定的网址下载图片,并将其转换为RGB模式,以便于进一步处理或显示。
最后返回转换后的demo图片,供后续展示使用。
device定义了模型在gpu上运行(如果gpu可用的话,即torch.cuda.is_available()),否则模型在cpu上运行,运行的速度会变慢。
cache_root类似于一个缓存文件夹的路径,缓存就是有些事物如“图书馆里所有的书”不便整体取用,但是又希望去使用。可以把使用频率较高的一部分,如你最喜欢的那本或者你平时最常使用的那本,保存到一个触手可及的地方,如身边书架上,这样使用起来就会节省时间。