题目描述:
吉哥还是那个吉哥,那个江湖人称“叽叽哥”的基哥。每当节日来临,女友众多的叽叽哥总是能从全国各地的女友那里收到各种礼物。有礼物收到当然值得高兴,但回礼确是件麻烦的事!无论多麻烦,总不好意思收礼而不回礼,那也不是叽叽哥的风格。现在,即爱面子又抠门的叽叽哥想出了一个绝妙的好办法:他准备将各个女友送来的礼物合理分配,再回送不同女友,这样就不用再花钱买礼物了!假设叽叽哥的n个女友每人送他一个礼物(每个人送的礼物都不相同),现在他需要合理安排,再回送每个女友一份礼物,重点是,回送的礼物不能是这个女友之前送他的那个礼物,不然,叽叽哥可就摊上事了,摊上大事了…现在,叽叽哥想知道总共有多少种满足条件的回送礼物方案呢?
输入格式:
输入数据第一行是个正整数T,表示总共有T组测试数据(T <= 100); 每组数据包含一个正整数n,表示叽叽哥的女友个数为n( 1 <= n <= 100 )。
输出格式:
请输出可能的方案数,因为方案数可能比较大,请将结果对1000000007 取模后再输出。(提示:在递推过程中,不断求余防止数据太大导致数据溢出。) 每组输出占一行。
输入样例:
3
1
2
4
输出样例:
0
1
9
思路:
先不写!
代码如下:
#include<bits/stdc++.h>
using namespace std;
int main()
{
int t;
cin>>t;
while(t--)
{
int n;
cin>>n;
long long a[1000];
a[1]=0;
a[2]=1;
for(int i=3;i<=105;i++)
{
a[i]=((i-1)*(a[i-1]+a[i-2]))%1000000007;
}
printf("%d\n",a[n]%1000000007);
}
}