Transfer Learning

Transfer Learning

Labeled target data and source data

Model Fine-tuning

​ Task 描述:

image-20211024195500000

​ 特点Target data 很少

叫做One-shot Learning

example:

语音辨识,image-20211024195641592

语音助手拿到首先说几句话跟着

image-20211024195828763

处理方式

Conservation Training

大量的source data,去初始化另一个network 的参数,然后再用target data 微调参数,很容易overfitting

image-20211024200138285

新的network 相当于旧的regularization

训练限制:

  1. 只调某个layer参数,防止过拟合

  2. fine-tune the whole network

调哪个layer?

语音辨识:调第一个一般,接近input的layer

IMAGE:前面固定,调Output 附近几个Layer 前面做的基础特征提取

image-20211024201020867

fine-tune + Transfer 效果最好

Multitask Learning

image-20211024201143361

task a & b 公用同一个feature:

image-20211024202122594

feature 都 无法公用:

image-20211024202131418

中间做些transform

选择适当相关的task

example

语音辨识,声音信号丢进去,翻译成人类语言:

image-20211024202242799

一起train

Progressive Neural Network

先学习task A 然后 task B

会不会学B的时候会影响task A呢?

image-20211024202928379

蓝色的output 输入到绿色input 来作为另外一个task 的输入,但是再BP的时候不会调蓝色的 ,蓝色锁死

如果更多task

image-20211024203738869

Unlabeled Target data & Labeled Source Data

例如手写数字辨识

image-20211024205041353

另外一些image,没有label:

image-20211024210140517

一个是train 一个 是 test, 效果不会很好,因为mismatch

data 的 分布 很不一样

Domain-adversarial Training

把source 和 target 转到同一个domain 处理

feature 根本没有交集

image-20211024210435798

就需要 feature extractor 尽量去除source target 的 不同

骗过 domain classifier,很轻松,Why?

image-20211024210755759

绿色 都 output 0就行了 要再增加Label predictor 需要满足

image-20211024210918588 image-20211024211220319

Domain classifier fails in the end

It should struggle !

Zero-shot Learning

可能有些target 在 source 里面 从没出现过

语音辨识:用音素(音标),不以词汇

***Representing each class by its attributes !***找独特的属性

Training:

image-20211024212653953

判断属性,而不是最后直接分类

image-20211024214027100

x1 x2 通过一个f 映射到 embedding space 然后 对应的属性y1 y2 也通过g映射到上面,如果新的进一个X3 依然可以采用相同的方法 目标是结果f g 尽可能接近

但是关于x-attributes 估计可能得依靠数据库支持

image-20211024214349118

修改 与不相干的拉的越远越好:

image-20211024215850220

K 叫做 margin max(0, 后面) 后面大于0 才会有loss <0 没有loss, 什么时候呢? 什么时候没有loss ?

image-20211024220009628 image-20211024220019090

inner product

image-20211024220208629

没有属性: 用word vector

回归到zero Learning:

进行一个combination,就是中间?辨识从没看过的东西

image-20211024222045074

Unlabeled Source and Labeled Target Data

self-taught learning

类似于半监督学习,有一个很大不同:data 可能是无关的 是不同类的

image-20211024223048429

Unlabeled Source and Unlabeled Target Data

Self-taught Clustering

image-20211024223037492 led Target Data

Self-taught Clustering

image-20211024223037492
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tototototorres

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值