1. 介绍
1.1 乳腺癌筛查
开发了一种新的DCN,它能够处理乳房x线摄影筛查的多个视图,并利用大分辨率图像而不缩小。将这种DCN称为多视图深度卷积网络(MV-DCN)。网络学习预测放射科医生的评估,将传入的样本分类为BI-RADS 0(“不完整”),BI-RADS 1(“正常”)或BI-RADS 2(“良性发现”)。研究了数据集大小和图像分辨率对所提出的MV-DCN筛选性能的影响,这将作为优化未来深度神经网络用于医学成像的事实上的指导方针。
通过可视化预测进一步研究了所提出的MV-DCN的潜力。最后,在测试集的随机子集上,提出的模型几乎与放射科医生委员会提供的相同数据一样准确。此外,通过将模型的预测与放射科医生委员会的预测平均,获得了最好的结果。
2. 高分辨率多视图深度卷积神经网络
2.1 深度卷积神经网络
深度卷积神经网络[9],[10]是一种以图像x为输入的分类器,通常有多个通道对应不同的颜色(如RGB),输出类别上的条件概率分布。通过一系列非线性函数来完成的,函数逐渐变换输入的像素级图像。深度卷积网络区别于多层感知器的一个主要特性是,它严重依赖于卷积层和池化层,这使得网络对输入中视觉特征的局部平移保持不变。
2.2 多视图深度卷积神经网络
自然图像的物体识别任务通常一次只涉及一个物体,相比之下,医学成像检