深度学习21天——卷积神经网络(CNN):天气识别(第5天)

目录

一、前期准备

1.1 设置GPU

1.2 导入数据

1.2.1 np.random.seed( i )

1.2.2 tf.random.set_seed()

1.3 查看数据

二、数据预处理

2.1 加载数据

2.1.1 image_dataset_from_directory()  

2.1.2 batch_size

2.2 可视化数据

2.3 再次检查数据

2.4 配置数据集

三、构建CNN、编译、训练、评估

3.1 构建CNN

3.2 编译

3.3 训练模型

3.4 模型评估


 活动地址:CSDN21天学习挑战赛

学习:深度学习100例-卷积神经网络(CNN)天气识别 | 第5天_K同学啊的博客-CSDN博客

一、前期准备

1.1 设置GPU

import tensorflow as tf

gpus = tf.config.list_physical_devices("GPU")

if gpus:
    gpu0 = gpus[0]                                        #如果有多个GPU,仅使用第0个GPU
    tf.config.experimental.set_memory_growth(gpu0, True)  #设置GPU显存用量按需使用
    tf.config.set_visible_devices([gpu0],"GPU")

1.2 导入数据

import matplotlib.pyplot as plt
import os,PIL

# 设置随机种子尽可能使结果可以重现
import numpy as np
np.random.seed(1)

# 设置随机种子尽可能使结果可以重现
import tensorflow as tf
tf.random.set_seed(1)

from tensorflow import keras
from tensorflow.keras import layers,models

import pathlib
# 写入数据文件夹所在的路径
data_dir  =  "D:/jupyter notebook/DL-100-days/datasets/weather_photos/"

data_dir  =  pathlib.Path(data_dir) # 创建了path路径的对象

相关资料:Python 的 os.path() 和 pathlib.Path()_Looooking的博客-CSDN博客

1.2.1 np.random.seed( i )

参考:np.random.seed()随机数种子学习笔记_偶尔躺平的咸鱼的博客-CSDN博客

①随机数种子相当于给我们一个初值,之后按照固定顺序生成随机数(该随机数种子对应的list);如果使用相同的seed( )值,则每次生成的随机数列表都相同;
②如果不设置这个值,则系统根据时间来自己选择这个值,此时每次生成的随机数因时间差异而不同。
③设置seed()的时,可以调用多次random()向该随机数的列表中添加信息;而再次使用设置的seed()值时,仅一次有效,也就是说调用第二次random()时则脱离该随机数的列表。
④seed方法设立的目的是为了能够实现实验的可重复进行,得到相同的随机值结果。
该设置的初值并没有实际意义

np.random.seed(0)             # 先定义一个随机数种子
print(np.random.rand(2, 3))   # 随机生成1个 2×3 的矩阵

所以,np.random.seed(0) 每次只对下一次生成的随机数起作用,不同的初值生成的随机数不同,调用相同的初值,生成的随机数是相同的

np.random.seed(0)             # 先定义一个随机数种子
print(np.random.rand(2, 3))   # 随机生成1个 2×3 的矩阵

np.random.seed(0)             # 先定义一个随机数种子
print(np.random.rand(2, 3))   # 随机生成1个 2×3 的矩阵

输出的两个结果相同

1.2.2 tf.random.set_seed()

上面写法是tensorflow2.0的写法,如果是tensorflow1.0则为:set_random_seed()

#tensorflow2.0
tf.random.set_seed(
    seed
)
 
 
#tensorflow1.0
tf.set_random_seed(
    seed
)

下面以 tf.set_random_seed(i)为例,用法一致

参考:

tf.random.set_seed用法_仁义礼智信达的博客-CSDN博客_tf.set_random_seed 和Tensorflow中关于随机数生成种子tf.set_random_seed()_qq_31878983的博客-CSDN博客_tensorflow 随机种子

用法与 np.random.seed(0)  相近,但分 全局种子操作种子 两种

1.3 查看数据

# 返回 data.dir 文件夹及所有子文件夹中所有后缀为 .jpg的形成列表后的长度
image_count = len(list(data_dir.glob('*/*.jpg')))

print("图片总数为:",image_count)

图片总数为: 1125

# 返回该文件夹下所有 sunrise +后面任意 且后缀为.jpg的列表
roses = list(data_dir.glob('sunrise/*.jpg'))
PIL.Image.open(str(roses[0]))  # 打开第一个图片

       返回的都是路径,因为PIL.Image.open()专接图片路径,用来直接读取该路径指向的图片。要求路径必须指明到哪张图,不能只是所有图所在的文件夹; 

二、数据预处理

2.1 加载数据

使用 image_dataset_from_directory() 方法将磁盘中的数据加载到 tf.data.Dataset

batch_size = 32
img_height = 180
img_width = 180
"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
train_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="training",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

Found 1125 files belonging to 4 classes.
Using 900 files for training. 

"""
关于image_dataset_from_directory()的详细介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/117018789
"""
val_ds = tf.keras.preprocessing.image_dataset_from_directory(
    data_dir,
    validation_split=0.2,
    subset="validation",
    seed=123,
    image_size=(img_height, img_width),
    batch_size=batch_size)

Found 1125 files belonging to 4 classes.
Using 225 files for validation.

2.1.1 image_dataset_from_directory()  

tf.keras.preprocessing.image_dataset_from_directory(
    directory,
    labels="inferred",
    label_mode="int",
    class_names=None,
    color_mode="rgb",
    batch_size=32,
    image_size=(256, 256),
    shuffle=True,
    seed=None,
    validation_split=None,
    subset=None,
    interpolation="bilinear",
    follow_links=False,
)

具体见大佬文章:tf.keras.preprocessing.image_dataset_from_directory() 简介_K同学啊的博客-CSDN博客_tf.keras.preprocessing.image

这里只展示出用到的参数:

  • directory: 数据所在目录。如果标签是inferred(默认),则它应该包含子目录,每个目录包含一个类的图像。否则,将忽略目录结构。
  • validation_split: 0和1之间的可选浮点数,可保留一部分数据用于验证。即选择测试集占数据集总数的比例
  • subsettrainingvalidation之一。仅在设置validation_split时使用。
  • seed: 用于shuffle和转换的可选随机种子。
  • image_size: 从磁盘读取数据后将其重新调整大小。默认:(256,256)。由于管道处理的图像批次必须具有相同的大小,因此该参数必须提供。
  • batch_size: 数据批次的大小。默认值:32

2.1.2 batch_size

        表示单次传递给程序用以训练的参数个数。比如我们的训练集有1000个数据。这是如果我们设置batch_size=100,那么程序首先会用数据集中的前100个参数,即第1-100个数据来训练模型。当训练完成后更新权重,再使用第101-200的个数据训练,直至第十次使用完训练集中的1000个数据后停止。
其他参考机器学习中的batch_size是什么?_勤奋的大熊猫的博客-CSDN博客_batch size是什么意思

2.2 可视化数据

plt.figure(figsize=(20, 10))

for images, labels in train_ds.take(1):
    for i in range(20):
        ax = plt.subplot(5, 10, i + 1)

        plt.imshow(images[i].numpy().astype("uint8"))
        plt.title(class_names[labels[i]])
        
        plt.axis("off")

2.3 再次检查数据

for image_batch, labels_batch in train_ds:
    print(image_batch.shape)
    print(labels_batch.shape)
    break

Image_batch是形状的张量(32,180,180,3)。这是一批形状180x180x3的32张图片(最后一维指的是彩色通道RGB)。

Label_batch 是形状(32,)的张量,这些标签对应32张图片
 

2.4 配置数据集

shuffle():打乱数据,关于此函数的详细介绍可以参考:数据集shuffle方法中buffer_size的理解 - 知乎

prefetch():预取数据,加速运行

cache():将数据集缓存到内存当中,加速运行

AUTOTUNE = tf.data.AUTOTUNE 
# 当buffer_size设定为tf.data.AUTOTUNE时,将会自动调整缓冲区的大小(buffer size)。

train_ds = train_ds.cache().shuffle(1000).prefetch(buffer_size=AUTOTUNE)
val_ds = val_ds.cache().prefetch(buffer_size=AUTOTUNE)

三、构建CNN、编译、训练、评估

因为与之前的区别不大,所以直接放代码了

3.1 构建CNN

num_classes = 4

"""
关于卷积核的计算不懂的可以参考文章:https://blog.csdn.net/qq_38251616/article/details/114278995

layers.Dropout(0.4) 作用是防止过拟合,提高模型的泛化能力。
在上一篇文章花朵识别中,训练准确率与验证准确率相差巨大就是由于模型过拟合导致的

关于Dropout层的更多介绍可以参考文章:https://mtyjkh.blog.csdn.net/article/details/115826689
"""

model = models.Sequential([
    layers.experimental.preprocessing.Rescaling(1./255, input_shape=(img_height, img_width, 3)),
    
    layers.Conv2D(16, (3, 3), activation='relu', input_shape=(img_height, img_width, 3)), # 卷积层1,卷积核3*3  
    layers.AveragePooling2D((2, 2)),               # 池化层1,2*2采样
    layers.Conv2D(32, (3, 3), activation='relu'),  # 卷积层2,卷积核3*3
    layers.AveragePooling2D((2, 2)),               # 池化层2,2*2采样
    layers.Conv2D(64, (3, 3), activation='relu'),  # 卷积层3,卷积核3*3
    layers.Dropout(0.3),  
    
    layers.Flatten(),                       # Flatten层,连接卷积层与全连接层
    layers.Dense(128, activation='relu'),   # 全连接层,特征进一步提取
    layers.Dense(num_classes)               # 输出层,输出预期结果
])

model.summary()  # 打印网络结构

卷积的计算_K同学啊的博客-CSDN博客

Dropout层 tf.keras.layers.Dropout() 介绍_K同学啊的博客-CSDN博客_keras.layers.dropout

关于 layers.experimental.preprocessing.Rescaling 查看官方文档tf.keras.layers.Rescaling  |  TensorFlow Core v2.9.1,即将输入值重新调整到新范围的预处理图层

池化层由之前的最大池化层调整成了平均池化层

3.2 编译

# 设置优化器
opt = tf.keras.optimizers.Adam(learning_rate=0.001)

model.compile(optimizer=opt,
              loss=tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True),
              metrics=['accuracy'])

还是 adam 优化器,不过设置了学习率

3.3 训练模型

epochs = 10

history = model.fit(
  train_ds,
  validation_data=val_ds,
  epochs=epochs
)

3.4 模型评估

acc = history.history['accuracy']
val_acc = history.history['val_accuracy']

loss = history.history['loss']
val_loss = history.history['val_loss']

epochs_range = range(epochs)

plt.figure(figsize=(12, 4))
plt.subplot(1, 2, 1)
plt.plot(epochs_range, acc, label='Training Accuracy')
plt.plot(epochs_range, val_acc, label='Validation Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, loss, label='Training Loss')
plt.plot(epochs_range, val_loss, label='Validation Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt.show()

  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

清园暖歌

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值