目标
- 介绍深度学习经典和最新模型
LeNet,ResNet,LSTM,BERT - 机器学习基础
损失函数,目标函数,过拟合,优化 - 实践
使用pytorch实现介绍的知识点
在真实数据上体验算法效果
内容
- 深度学习基础——线性神经网络,多层感知机
- 卷积神经网络——LeNet,AlexNet,VGG,Inception,ResNet
- 循环神经网络——RNN,GRU,LSTM,seq2seq
- 注意力机制——Attention,Transformer(在NLP的应用)
- 优化算法——SGD,Momentum,Adam
- 高性能计算——并行,多GPU,分布式
- 计算机视觉——目标检测,语义分割
- 自然语言处理——词嵌入,BERT
每次直播4小节,每月一次Kaggle竞赛。
将要学到什么
- What:深度学习里面有哪些技术?
- How:如何实现和调参?
- Why:背后的原因(直觉、数学)
个人目标:搞懂Why~
教材:https://zh-v2.d2l.ai/
课程主页:https://courses.d2l.ai/zh-v2/