4.深度学习的几何解释与梯度的优化

深度学习的几何解释与梯度优化

深度学习的几何解释

​ 神经网络完全由一系列张量运算组成,而这些张量运算都只是输入数据的几何变换。神经网络可以解释为高维空间中非常复杂的几何变换,这种变换可以通过许多简单的步骤来实现。

​ 可以用以下来举例:

​ 一张红纸,一张蓝纸。将其中一张放在另一张上。将两张绘制一起揉成小球。这个纸球就是你输入的一个数据,每张纸对应于分类问题中的一个类别。神经网络(或者任何机器学习模型)要做的就是找到可以让纸球恢复平整的变换,从而能够再次让两个类别明确可分。通过深度学习,这一过程可以用三维空间中一系列简单的变换来实现,比如你用手指对纸球做的变换,每次做一个动作。

​ 让纸球恢复平整就是机器学习的内容:为复杂的、高度折叠的数据流行找到简洁的表示。机器学习将复杂的几何变换逐步分解为一长串基本的集合变化,这与人类展开纸球所采取的策略大致相同。深度网络的每一层都通过变换使数据解开一点点——许多层堆叠在一起,可以实现非常复杂的解开过程。

基于梯度的优化

​ 再第一个神经网络示例中,每个神经层都用下述方法对输入数据进行变换

output = relu(dot(W, input) + b )

​ 再表达式中,W和b都是张量,均为该层的属性。**它们被称为该层的权重或可训练参数,**分别对应 kernel 和 bias 属性。

  • 一开始,这些权重矩阵取较小的随机值,这一步叫做随机初始化。当然,W 和 b 都是随机的,relu(dot(W, input)+ b)肯定不会得到任何有用的表示。虽然得到的表示是没有意义的,但这是一个起点。
  • 下一步则是根据反馈信号逐渐调节这些权重。这个逐渐调节的过程叫做训练,也就是机器学习中的学习。

​ 上述过程发生在一个**训练循环(training loop)**中,具体过程如下(必要时一直重复这些步骤):

  1. 抽取训练样本 x 和对应目标 y 组成的数据批量。
  2. 在 x 上运行网络 [ 这一步叫作前向传播(forward pass)],得到预估值 y_pared。
  3. 计算网络在这批数据上的损失,用于衡量 y_pred 和 y 之间的距离。
  4. 更新网络的所有权重,使网络在这批数据上的损失略微下降。

最终得到的网络在训练数据上的损失非常小,即预测值 y_pred 和预期目标y之间的距离非常小。网络“学会”将输入映射到正确的目标。

如何判断网络中的权重系数是否为增大还是减小?
保持网络中的其他权重不变,只考虑某个标量系数,让其尝试不同的取值。

假设 这个系数的初始值为0.3。对一批数据做完前向传播后,网络在这批数据上的损失是0.5。如果将这个系数的值改为0.35并重新运行前向传播后,损失会增大到0.6。但如果修改系数为0.25,损失会减少到0.4。
在这个例子里,系数减小0.05有利于损失最小化。对于网络中的所有系数都要重复这个过程。

以上这种方法是低效的,有一种更好的方法:
利用网络中所有运算都是可微的这一事实,计算损失相对于网络系数的梯度,然后向梯度的反方向改变系数,从而使损失降低。

张量运算的导数——梯度

梯度(gradient)是张量运算的导数。它是倒数这一概念向多元函数导数的推广。多元函数是以张量作为输入的函数。

假设有一个输入向量 x、一个矩阵 W、一个目标y和一个损失函数 loss。你可以用 W来计算预测值 y_pred,然后计算损失,或者说预测值 y_pred 和目标 y 之间的距离。

y_pred = dot(W, x)
loss_value = loss(y_pred, y)

如果输入数据 x 和 y 保持不变,那么这可以看作将W映射到损失值的函数。
loss_value = f(W)

假设 W 的当前值为 W0。f 在 W0 点的导数是一个张量 gradient(f)(W0) ,其形状为W相同每个系数gradient(f)(W0)[i, j] 表示改变 W0[i, j] 时 loss_value 变化的方向和大小。张量gradient(f) (W0)是函数 f(W) = loss_value 在 W0 的导数。

gradient(f)(W0) 也可以看作表示f(W) 在 W0 附近曲率的张量。

随机梯度下降

给定一个可微函数,理论上可以使用解析法找到它的最小值:函数的最小值是导数为0的点,因此只需要找到所有导数为0的点,然后计算函数在其中哪个点具有最小值。

这一方法同样适用于神经网络,就是用解析法求出最小损失函数对应的所有权重值。可以通过方程 gradient(f)(W) = 0 求解W来实现这一方法。这是包含N个变量的多项式方程,其中N表示网络中系数的个数。实际中神经网络是无法求解的,因为参数的个数不会少于几千个,而且经常有上千万个。

此时,可以使用训练循环:基于当前在随机数据批量上的损失,一点点的对参数进行调节。由于处理的是一个可微函数,可以计算出它的梯度,从而有效地实现第四步。沿着梯度反方向更新权重,损失每次都会变小一点。

  1. 抽取训练样本 x 和对应目标 y 组成的数据批量。
  2. 在 x 上运行网络,得到预测值 y_pred。
  3. 计算网络在这批数据上的损失,用于衡量 y_pred 和 y 之间的距离。
  4. 计算损失相对于网络参数的梯度 [ 一次反向传播(backward pass) ]。
  5. 将参数沿着梯度的单方向移动一点,比如 W -= step * gradient,从而使这批数据上损失减小一点。

以上方法叫做 **小批量随机梯度下降(mini-batch stochastic gradient descent,又称为小批量SGD)。**值得注意的是 step(步长,也叫做学习率(learning rate)因子选取合适的值也是很重要的。

​ 小批量SGD算法的一个变体是每次迭代时只抽取一个样本和目标,而不是抽取一批数据。这叫作真SGD(有别于小批量SGD)。还有另一种极端,每一次迭代都在所有数据上运行,这叫做批量SGD。这样做的话,每次更新都更加准确,但计算代价也高得多。这两个极端之间的有效折中则是选择合理的批量大小。

此外,SGD还有多种变体,其区别在于计算下一次权重更新还要考虑上一次权重更新,而不是仅仅考虑当前梯度,比如带动量SGDAdagradRMSProp等变体。这些变体被称为优化方法优化器。其中动量的概念在许多变体中都有应用。动量解决了SGD的两个问题:收敛速度局部极小点

[外链图片转存失败,源站可能有防盗链机制,建议将图片保存下来直接上传(img-bZ7UFkBQ-1658138798627)(C:\Users\33219\Downloads\局部最小点和全局最小点.png)]

如上图所示,如果位于局部极小点:在这个位置无论向左移动还是向右移动都会导致损失值增大。如果使用小学习率的SGD进行优化,那么优化过程可能会陷入局部极小点,而无法找到全局最小点。

使用动量方法可以解决这个问题

​ 想象一个小球从损失函数曲线上滚下来。如果小球的动量足够大,那么他不会卡在局部极小点,最终会达到全局最小点。

​ 动量方法的实现:每一步都移动小球,不仅考虑当前的卸率(加速度),还考虑当前的速度(来自于加速度)。类比于神经网络,更新参数 w 不仅要考虑当前的梯度值,还要考虑上一次的参数更新,其简单实现如下:

past_velocity = 0
# 不变的动量因子
momentum = 0.1
# 优化循环
while loss > 0.01:
    w, loss, gradient = get_current_parameters()
    # learning_rate 学习率,即步长 
    velocity = past_velocity * momentum - learning_rate * gradient
    w = w + momentum * velocity - learning_rate * gradient
    past_velocity = velocity
    update_parameter(w)

链式求导:反向传播算法

​ 在实践中,神经网络函数包含许多连接在一起的张量运算,每个运算都有简单的、一致的导数。例如,下面这个网络 f 包含3个张量运算 a、b 和 c,还有3个权重矩阵 W1、W2 和 W3。

​ f(W1,W2,W3) = a(W1,b(W2,c(W3)))

、b 和 c,还有3个权重矩阵 W1、W2 和 W3。

​ f(W1,W2,W3) = a(W1,b(W2,c(W3)))

​ 这种函数链可以利用链式法则: (f(g(x)))’ = f’(g(x)) * g’(x) 。将链式法则应用于神经网络梯度值的计算,得到的算法叫做反向传播(有时也叫做反式积分)。反向传播从最终损失值开始,从最顶层反向作用至最底层,利用链式法则计算每个参数对损失值的贡献大小。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值