yoloV5推理C++

要在C++中进行Yolov5推理,您需要下载Yolov5的预训练模型和相应的C++推理库。以下是一个简单的步骤: 1. 下载Yolov5预训练模型 您可以从Yolov5官方GitHub存储库(https://github.com/ultralytics/yolov5)下载预训练模型。选择您需要的模型并将其下载到本地计算机。 2. 安装C++推理库 有许多C++推理库可供选择,例如OpenCV、TensorRT、ONNX等。在这里,我们将使用OpenCV深度学习模块,因为它易于安装和使用。 要使用OpenCV中的深度学习模块,您需要安装OpenCV并启用DNN模块。可以在以下链接中找到有关如何安装OpenCV的信息:https://opencv.org/releases/。 3. 加载模型 使用OpenCVdnn模块,您可以轻松加载Yolov5模型。以下是示例代码: ```cpp cv::dnn::Net net = cv::dnn::readNet("path/to/your/yolov5/model", "path/to/your/yolov5/config"); ``` 4. 进行推理 一旦模型被加载,您可以使用它来进行推理。以下是一个示例代码,演示如何使用OpenCV进行Yolov5推理: ```cpp cv::Mat image = cv::imread("path/to/your/image"); cv::Mat blob = cv::dnn::blobFromImage(image, 1/255.0, cv::Size(640, 640), cv::Scalar(0, 0, 0), true, false); net.setInput(blob); std::vector<cv::Mat> outs; net.forward(outs, net.getUnconnectedOutLayersNames()); for (cv::Mat& out : outs) { // 处理输出结果 } ``` 在上面的代码中,我们首先读取要进行推理的图像,然后使用OpenCV的blobFromImage函数将其转换为网络输入。接下来,我们将输入设置为网络的输入,然后调用前向方法来获得输出。最后,我们可以通过处理输出来获得检测结果。 请注意,在处理输出时,您需要将输出转换为可读的格式。具体来说,您需要将它们转换为边界框,并且通过应用非最大抑制算法来过滤掉重叠的检测结果。 这是一个简单的步骤来使用C++进行Yolov5推理,但要进行更深入的推理,您需要深入了解底层库和算法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芝士是只猫

开源使得世界变得更美丽

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值