文章目录
对YOLOV5官网推荐的DNN(C++版)推理代码的学习心得。
代码上传至
GitHub - zzbbzz626/yolov5-DNN-inference
Contribute to zzbbzz626/yolov5-DNN-inference development by creating an account on GitHub.
https://github.com/zzbbzz626/yolov5-DNN-inference
OpenCV version >= 4.5

YOLO检测头的大小可以通过上图计算过程计算。

检测头预测厚度为[x,y,w,h,conf,cls] cls=class number。当采用单分类时cls=1,因此图中的厚度为6。
在更改推理模型为自己训练的不同版本的YOLOV5推理出的onnx文件时,只需要更改程序的78、79行中的dimensions=自己训练模型的厚度,row=3x((img/8)2+(img/16)2+(img/32)^2)即可。


本文分享了作者学习YOLOV5官网推荐的C++推理代码的心得,重点讲解了如何根据自己的训练模型调整YOLO检测头尺寸,并提供了源代码链接。适合开发者理解YOLOV5在实际项目中的应用和迁移工作。

4389

被折叠的 条评论
为什么被折叠?



