Numpy基础

本文介绍了NumPy库的基本用法,包括创建数组、初始化零矩阵和一矩阵、生成均匀间隔数组、设置数据类型、获取数组信息、进行算术运算、比较操作、聚合函数应用以及数组的复制和排序。内容覆盖了数组操作的核心概念,是Python数据科学初学者的实用指南。
摘要由CSDN通过智能技术生成

创建数组

#创建数组
a=np.array([1,2,3])
b=np.array([(1,5,2,3),(4,5,6,7)],dtype=np.float32)
c=np.array([[(1,5,2,3),(4,5,6,7)],[(3,2,1,0),(4,5,6,7)]],dtype=np.float32)
print(a,'\n',b,'\n',c)

[1 2 3] 
 [[1. 5. 2. 3.]
 [4. 5. 6. 7.]] 
 [[[1. 5. 2. 3.]
  [4. 5. 6. 7.]]

 [[3. 2. 1. 0.]
  [4. 5. 6. 7.]]]

初始化占位符

零矩阵

np.zeros((3,4))#创建3*4的0矩阵

在这里插入图片描述

1矩阵

np.ones((2,3,4),dtype=np.int16)#创建2*3*4的矩阵,第一个2为通道数

array([[[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]],

       [[1, 1, 1, 1],
        [1, 1, 1, 1],
        [1, 1, 1, 1]]], dtype=int16)

均匀间隔数组

d=np.arange(10,25,5)#均匀间隔数组,步进值为5
np.linspace(0,2,9)#创建均匀间隔数组,使用样本数进行分割数组

数据类型

数据类型
np.int64带符号64位
np.float双精度浮点数
np.complex复数
np.boolbool值
np.objectPython对象
np.string_固定长度字符串
np.unicode_固定长度Unicode

数组信息

a.shape
len(a)
b.ndim
e.size
b.dtype
b.dtype.name
b.astype(int)

数组计算

算术运算

a-b/np.subtract(a,b)
a+b/np.add(a,b)
a/b/np.divide(a,b)
a*b/np.multiply(a,b)
np.exp(a)
np.sqrt(a)
np.sin(a)/np.cos(a)
np.log(a)
a.dot(b)点积

比较

a=np.array([1,2,3,4])
b=np.array([3,4,5,1])

1.a==b
[False False False False]
2.a<2
[ True False False False]
3.np.array_equal(a,b)
False

聚合函数

函数描述
a.sum()数组汇总
a.min()数组最小值
a.max(axis=0)按行求最大值
a.cumsum(axis=1)按列进行累加
a.mean()平均数
a.median()中位数
a.corrcoef()求相关系数
np.std(a)标准差

数组复制

h=a.view()创建同一数组视图,此时改变a,h会随之改变,也被称作浅拷贝

h=a.copy()创建数组的深度拷贝

数组排序

a.sort()

a.sort(axis=0)以行为依据对数组排序
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Miracle Fan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值