查看GPU使用情况和设置CUDA_VISIBLE_DEVICES

文章介绍了如何在拥有多个GPU的服务器中选择特定GPU运行程序,主要涉及CUDA_VISIBLE_DEVICES环境变量的使用。通过临时设置(如Linux的export命令和Windows的系统环境变量)或永久设置(修改.bashrc文件)来指定GPU。同时,提到了使用nvidia-smi命令查看GPU状态。在Python环境中,可以通过os模块设置CUDA环境变量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、简介

服务器中有多个GPU,选择特定的GPU运行程序可在程序运行命令前使用:CUDA_VISIBLE_DEVICES=0命令。0为服务器中的GPU编号,可以为0, 1, 2, 3等,表明对程序可见的GPU编号。
在这里插入图片描述

二、查看GPU状态和信息

nvidia-smi

在这里插入图片描述
定时刷新状态,-n(秒),每秒刷新一次

watch -n 1 nvidia-smi

三、使用

需要注意前提是你有GPU

3.1临时设置(临时设置方法一定要在第一次使用 cuda 之前进行设置)

Linux: export CUDA_VISIBLE_DEVICES=1  

export CUDA_VISIBLE_DEVICES=1,2

windows:  set CUDA_VISIBLE_DEVICES=1

3.2python 运行时设置

import os
os.environ["CUDA_VISIBLE_DEVICES"] = "1"

os.environ["CUDA_VISIBLE_DEVICES"] = "1,2"

CUDA_VISIBLE_DEVICES=1 python **.py

CUDA_VISIBLE_DEVICES=0,1

注意:临时设置方法一定要在第一次使用 cuda 之前进行设置

3.3永久设置

  • linux:
    在~/.bashrc 的最后加上export CUDA_VISIBLE_DEVICES=1,然后source ~/.bashrc
  • windows:
    打开我的电脑环境变量设置的地方,直接添加就行了。

四、参考资料

pytorch指定多块GPU运行代码
设置 CUDA_VISIBLE_DEVICES

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

aJupyter

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值