一、背景
针对经典的组合优化的调度模型,动态柔性作业车间调度问题(DFJSP),提出一种多目标的求解方法。以最小化延期率和最小化机器总负荷作为目标函数。以随机机器故障、新工件插入作为动态随机事件。以改进的DQN作为求解算法,设计一种两阶段的DDQN算法求解多目标问题。
二、相关研究领域所用方法或模型
论文:Efficient Multi-Objective Optimization on Dynamic Flexible Job Shop Scheduling Using Deep Reinforcement Learning Approach
目标函数:最小化延期时间、最小化makespan
模型:多目标柔性作业车间调度模型
算法:双层DDQN
State(5种):
1、机器的最大完成时间
2、工件的最大完成时间
3、机器的平均利用率
4、未完成加工的工件的预期平均延期率
5、未完成加工工件的实际平均延期率
Action(7种):
Reward(6种):
其余参数:
论文:Dynamic multi-objective scheduling for flexible job shop by deep reinforcement learning
目标函数:最小化总加权延期、最大化平均机器利用率
模型:多目标柔性作业车间调度模型
算法:双层DDQN
State(7种):
1、机器的平均利用率
2、机器利用率的标准偏差
3、总工序的完工率
4、工件的平均完工率
5、工件完工率的标准偏差
6、预估延期率
7、实际延期率
Action(6种):
Reward(4种):
算法流程:
三、模型构建及算法建立
目标函数:最小化延期时间、最大化机器利用率
模型:多目标柔性作业车间调度模型
算法:两阶段DDQN
State(7种):
1、机器的平均利用率
2、机器利用率的标准偏差
3、工件的完工率
4、工件完工率的标准偏差
5、预估延期率
6、实际延期率
7、每个工件工序的完工率的平均值
Action(6种):
Reward(4种):