人工智能02-简单分类问题?逻辑回归!

02-逻辑回归

引入

  • 问题:根据余额判断小明是否回去看电影。
  • 训练数据:
余额-5-4-3-2-112345
是否看电影(0/1)0000011111

Y = 0.1364 x + 0.5 → y = { 1 , Y ≥ 0.5 0 , Y > 0.5 Y=0.1364x+0.5\rightarrow y=\begin{cases}1,Y\geq0.5 \\ 0,Y>0.5\end{cases} Y=0.1364x+0.5y={1,Y0.50,Y>0.5
但是,当加入一个数据 ( 50 , 1 ) (50,1) (50,1)时,数据不对称,其实当 x = 1 x=1 x=1时,被预测为 Y = 0.4888 , y = 0 Y=0.4888,y=0 Y=0.4888,y=0,准确率降低!

在这里插入图片描述

不能再使用线性回归!

分类任务

基本框架:
{ y = f ( x 1 , x 2 , ⋯   , x n ) , y = 0 , 1 , ⋯   , n − 1 判断为类别 I , 如果 y = i , i = 0 , 1 , ⋯   , n − 1 \left\{ \begin{aligned} y=f(x_1,x_2,\cdots,x_n),y=0,1,\cdots,n-1 \\ \text{判断为类别}I,\text{如果}y=i,i=0,1,\cdots,n-1 \end{aligned} \right. {y=f(x1,x2,,xn),y=0,1,,n1判断为类别I,如果y=i,i=0,1,,n1

逻辑回归

简单逻辑回归
  • 定义:用于解决分类问题的一种模型。根据数据特征或属性,计算其归属于某一类别的概率 P ( x ) P(x) P(x),根据概率数值判断其所属类别。

  • 主要应用场景:二分类问题

例如引入中的问题,可表示为sigmoid方程

P ( x ) = 1 1 + e − x , y = { 1 , P ( x ) ≥ 0.5 0 , P ( x ) < 0.5 P(x)=\frac{1}{1+e^{-x}},y=\begin{cases}1,P(x)\geq0.5\\0,P(x)<0.5\end{cases} P(x)=1+ex1,y={1,P(x)0.50,P(x)<0.5
在这里插入图片描述

其中, y y y类别结果 P P P概率分布函数 x x x特征值

复杂逻辑回归

在这里插入图片描述

如图,此时为二维问题, x 1 , x 2 x_1,x_2 x1,x2均作为输入,两个自变量判断 y 1 y_1 y1的概率,此时的概率函数为:
P ( x ) = 1 1 + e − g ( x ) , g ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 P(x)=\frac{1}{1+e^{-g(x)}},g(x)=\theta_0+\theta_1x_1+\theta_2x_2 P(x)=1+eg(x)1,g(x)=θ0+θ1x1+θ2x2
此时, g ( x ) g(x) g(x)即为图中蓝色线的表达式,该线称为决策边界(Decision Boundary)。许多决策问题即为找出决策边界。

在这里插入图片描述

再举一个栗子,如图决策边界为圆形 x 1 , x 2 x_1,x_2 x1,x2均作为输入,两个自变量判断概率 y 1 y_1 y1,此时的概率函数为:
P ( x ) = 1 1 + e − g ( x ) , g ( x ) = θ 0 + θ 1 x 1 + θ 2 x 2 + θ 3 x 1 2 + θ 4 x 2 2 P(x)=\frac{1}{1+e^{-g(x)}},g(x)=\theta_0+\theta_1x_1+\theta_2x_2+\theta_3x_1^2+\theta_4x_2^2 P(x)=1+eg(x)1,g(x)=θ0+θ1x1+θ2x2+θ3x12+θ4x22
⋆ \star 逻辑回归结合多项式边界函数可解决复杂的分类问题!

损失函数

J i = { − log ⁡ ( P ( x i ) ) , y i = 1 − log ⁡ ( 1 − P ( x i ) ) , y i = 0 J_i=\begin{cases}-\log\left(P\left(x_i\right)\right),y_i=1\\-\log\left(1-P\left(x_i\right)\right),y_i=0 \end{cases} Ji={log(P(xi)),yi=1log(1P(xi)),yi=0

P ( x i ) P(x_i) P(xi) x i x_i xi为正样本的概率函数, x i x_i xi的损失函数 J i J_i Ji理解:

  • y i = 1 y_i=1 yi=1即为正样本,若 P ( x i ) = 0 P(x_i)=0 P(xi)=0时,此时损失极大,随着其接近1,损失减小
  • y i = 0 y_i=0 yi=0即为负样本,若 P ( x i ) = 1 P(x_i)=1 P(xi)=1时,此时损失极大,随着其接近0,损失减小

接下来最小化损失函数:
J = 1 m ∑ i = 1 m J i = − 1 m [ ∑ i = 1 m ( y i log ⁡ ( P ( x i ) ) ) + ( 1 − y i ) log ⁡ ( 1 − P ( x i ) ) ] J=\frac{1}{m}\sum^m_{i=1}J_i=-\frac{1}{m}\left[\sum^m_{i=1}\left(y_i\log{\left(P\left(x_i\right)\right)}\right)+(1-y_i)\log{\left(1-P\left(x_i\right)\right)}\right] J=m1i=1mJi=m1[i=1m(yilog(P(xi)))+(1yi)log(1P(xi))]
此时, P ( x ) = 1 1 + e − g ( x ) , g ( x ) = θ 0 + θ 1 x 1 + ⋯ P(x)=\frac{1}{1+e^{-g(x)}},g(x)=\theta_0+\theta_1x_1+\cdots P(x)=1+eg(x)1,g(x)=θ0+θ1x1+

使用梯度下降法,重复计算直到收敛:
{ t e m p θ j = θ j − α ∂ ∂ θ j J ( θ ) θ j = t e m p θ j } \begin{Bmatrix} temp_{\theta_j}=\theta_j-\alpha\frac{\partial}{\partial\theta_j}J(\theta)\\ \theta_j=temp_{\theta_j} \end{Bmatrix} {tempθj=θjαθjJ(θ)θj=tempθj}

以上为B站BV1884y1k7cv的课程笔记,如有不足之处请指出,谢谢!

  • 30
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值