SMCA-DETR代码中的高斯分布

代码地址:GitHub - gaopengcuhk/SMCA-DETR

论文翻译解析:https://www.shlab.org.cn/news/5443081

在transformer.py文件中TransformerDecoderLayer类的forward下

偏移量预测:

计算距离(这里用到了广播机制):

单尺度:

高斯计算:

然后当作列表传入多头注意力机制:

这里会跳转到multi_head_attention_forward()函数去,先将输入列表形式的gaussian提取出为tensor,然后改变维度顺序,和注意力权重相加

和论文中写的完全不一样:没有hw的预测,也不是高斯分布的计算,最后也没有logG和权重的相加

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小小老大MUTA️

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值