看了一篇文章,想起自已不久前有同样的疑惑,于是想写下自己关于此问题的思考:
为什么 P(至少成功1次) = Σ P(几何分布) ,总结几何分布和连续失败概率的关系
思路:
证明:
参考:
数学基础之二项分布与二项式定理
二项式定理与二项分布、多项式定理与多项分布
推广:
上面证明了p(n次试验至少成功一次),在二项分布和几何分布的关系
那对于至少成功2次/3次/…n次
应该对应二项分布和负二项分布
几何分布只是负二项分布r=1的特殊情况
举个例子,p(n次试验至少成功两次)思路大概是:
二项分布:p(n次至少成功2次)=1-p(n次至多成功1次)
负二项分布:p(成功2次时试验次数<=n) =1-p(成功2次时试验次数>n(n次至多成功1次))
p(n次成功2次时试验次数(负二项分布))=p(n次至少成功2次(二项分布))
参考:
负二项分布(The Negative Binomial Distribution)
几何分布和负二项分布的关系
负二项分布与几何分布等价的实证
超几何分布和负二项分布
其实想了这么多,只是想在同时求成功n次时试验次数期望和至少成功n次的试验次数概率分布时,可以只求负二项分布pdf再求cdf,不求二项分布。
【概率论】为什么 P(至少成功1次) = Σ P(几何分布)
于 2023-11-19 03:19:54 首次发布
本文探讨了几何分布与二项分布之间的关系,特别是关于至少成功一次的概率等于几何分布之和的情况,并进一步解释了如何通过负二项分布计算至少成功n次的试验次数概率。作者还提及了负二项分布在处理这类问题时的便利性。
摘要由CSDN通过智能技术生成