初等变换、初等矩阵

目录

初等变换与初等矩阵的概念

初等变换

初等矩阵

等价矩阵

矩阵的秩


初等变换与初等矩阵的概念


初等变换是一种基本的矩阵变换,用于线性代数中的各种问题求解,包括求解线性方程组、计算矩阵的逆等。

初等矩阵是对单位矩阵进行一次初等变换后得到的结果矩阵,记作 。初等矩阵本身是一种变换矩阵,对应于一种初等变换。 初等矩阵具有可逆性 对一个单位矩阵 进行一次初等变换可以得到一个初等矩阵 ,如果再对矩阵执行一边反向操作(左乘另一个初等矩阵 ,那么矩阵 就可以变回没有发生变换前的单位矩阵 ,即 ,同理 ,从而满足了矩阵的逆的定义。 的角度看 是它的逆 ;从 的角度看则 是它的逆 ,所以有 互为逆矩阵。 通过初等矩阵求解一个矩阵的逆的方式 如果一个一般矩阵有逆的话,它的增广矩阵形式 一定有解或无解[1]。当有唯一解时,这个增广矩阵的系数矩阵将变成单位矩阵 ;据此我们可以理解,对一个有逆的一般矩阵(方阵)而言,通过一系列变换操作得到它的"行最简形式"一定是一个单位矩阵 ,也即 因此,如果一个矩阵 有逆,就会存在一系列初等矩阵 ,使得: 等式两边同时右乘 得到 ; 该式意味着当一个矩阵 可逆,那么可以在 的基础上,左乘一系列使矩阵 化为单位矩阵 的初等矩阵来得到矩阵 的逆 。

初等变换


初等变换出现在《高等代数》中,用于求解线性方程组、计算矩阵的逆和行列式等。

初等变换包括三种基本的变换:

  1. 矩阵的初等行变换:包括对矩阵的行进行交换、对矩阵的行进行倍数乘法、以及对矩阵的行进行加减法。
  2. 矩阵的初等列变换:相应的变换应用于矩阵的列。
  3. 矩阵的初等元素变换:这是指对矩阵中的每个元素进行特定的运算,如倍数乘、加、减等。

初等矩阵


初等矩阵是指由单位矩阵经过一次三种矩阵初等变换得到的矩阵。
初等矩阵具有可逆性,对一个单位矩阵进行一次初等变换可以得到一个初等矩阵,如果再对矩阵执行一边反向操作,那么矩阵就可以变回没有发生变换前的单位矩阵,即满足矩阵的逆的定义。
初等矩阵的逆矩阵可以通过反向操作得到,例如,如果初等矩阵是由单位矩阵进行一次行变换得到的,那么它的逆矩阵就是由单位矩阵进行一次相反的行变换得到的。
对于一个可逆矩阵A,如果存在一系列初等矩阵P1, P2, ..., Pn,使得A = P1P2...Pn,那么A的逆矩阵可以通过左乘一系列使矩阵化为单位矩阵的初等矩阵来得到,即A^(-1) = Pn^(-1)...P2^(-1)P1^(-1)。
因此,初等矩阵在求解线性方程组、计算矩阵的逆和行列式等问题中具有重要作用。

等价矩阵


等价矩阵是指在矩阵论和线性代数中,存在一个可逆矩阵(P、Q),使得两个矩阵A和B经过有限次的初等变换得到彼此的情况。也就是说,如果存在可逆矩阵(P、Q),使得B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。

例如,如果有一个矩阵A,需要求解一个可逆矩阵P和Q,使得B=QAP,这个过程就是通过有限次的初等变换将A变换成B,这两个矩阵之间就互为等价关系。

在求解等价矩阵时,需要先确定一个可逆矩阵P和Q,然后通过一系列的初等变换将A变换成B,这个变换过程可以通过行变换和列变换来实现。

等价矩阵在矩阵分析和线性代数中有着广泛的应用,例如求解线性方程组、计算矩阵的逆和行列式等问题中都需要用到等价矩阵的概念和方法。

矩阵的秩


矩阵的秩是矩阵中线性无关的列向量或行向量的最大数量。
对于矩阵A,如果存在一个可逆矩阵P,使得PA=B,那么A和B是等价的。
如果A和B是等价的,那么它们具有相同的秩。
因此,可以通过对矩阵进行初等变换来求解矩阵的秩。
初等变换包括:
1. 交换两行(或两列)
2. 用一个非零数乘某行(或某列)
3. 把某行(或某列)的若干倍加到另一行(或另一列)上
通过对矩阵进行初等变换,可以将其化为阶梯形矩阵,阶梯形矩阵的非零行数就是矩阵的秩。
例如,对于矩阵A = [[1, 2, 3], [4, 5, 6], [7, 8, 9]],可以通过初等变换将其化为阶梯形矩阵:
1. 将第2行减去第1行的4倍,得到:[[1, 2, 3], [0, -3, -6], [7, 8, 9]]
2. 将第3行减去第1行的7倍,得到:[[1, 2, 3], [0, -3, -6], [0, -6, -12]]
3. 将第3行减去第2行的2倍,得到:[[1, 2, 3], [0, -3, -6], [0, 0, 0]]
因此,矩阵A的秩为2。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会做饭的网络工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值