高数中的驻点是什么?拐点是什么?

本文介绍了高等数学中驻点的概念,包括极大值点和极小值点,以及如何通过导数判断。重点阐述了拐点的定义,即函数曲率变化的点,条件是二阶导数为零而三阶导数不为零,标志函数凹凸性改变。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在微积分中,特别是在高等数学(高数)课程中,"驻点"(stationary point)是指函数的导数为零的点,也就是函数的斜率在该点处为零。在数学上,我们可以通过求函数的导数,并找到导数为零的点来确定函数的驻点。

驻点分为两种类型:极大值点和极小值点。如果在驻点的左侧的导数由正变为负,那么该点是一个极大值点。如果在驻点的左侧的导数由负变为正,那么该点是一个极小值点。需要注意的是,驻点也可以是函数的拐点,即函数的曲率发生变化的点。


在高等数学(高数)中,"拐点"(inflection point)是指函数图像上的一个点,该点处的曲线由凹向上或凹向下转变,也就是说,在拐点处,函数的凹凸性质发生改变。

数学上,一个函数在某点处有拐点,当且仅当该点的二阶导数存在且为零,但函数的三阶导数不为零。具体地说:

1. 如果一个函数在点 \(x = c\) 处的二阶导数为零,即 \(f''(c) = 0\),并且三阶导数 \(f'''(c)\) 不为零,那么该点 \(x = c\) 就是函数的一个拐点。

在拐点处,函数的曲线可能从凹向上变为凹向下,或者从凹向下变为凹向上。拐点是函数图像上的一个特殊点,标志着函数凹凸性质的变化。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

会做饭的网络工程师

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值