对于确定性信号,频率内容是通过对信号本身进行傅里叶变换来获得的。
对于随机信号,频率内容是通过信号的自相关函数进行傅里叶变换来获得的,这样得到的是信号的功率谱密度(PSD)。
下面详细解释一下:
-
随机过程的PSD:
- 随机过程(Random Process,RP)指的是时间上的一个随机信号,也就是说信号的值在不同的时间点上是随机的。
- 对于一个随机信号来说,直接进行傅里叶变换不一定有意义,因为信号的值在时间上是随机变化的。为了获取该信号的频率成分,我们首先需要找到它的自相关函数(ACF, Autocorrelation Function)。
- 自相关函数描述了信号在不同时间点上的相关性,可以理解为信号与其时间平移版本之间的相似程度。
- 通过对自相关函数进行傅里叶变换,就能得到信号的功率谱密度(PSD, Power Spectral Density),这告诉我们信号的不同频率成分的“强度”。
-
确定性信号的频谱内容:
- 对于确定性信号,例如正弦波或任何已知的非随机信号,直接进行傅里叶变换可以得到其频率成分,也就是它的频谱内容。
- 这里不需要自相关函数,因为信号本身的频率内容就可以通过傅里叶变换清晰地表示出来。
-
PSD的性质(针对实值随机信号 (R_X(t))):
- 如果随机信号是实值信号,那么它的功率谱密度具有一些重要性质:
- 对称性:实值信号的PSD是关于零频对称的。这意味着正频率和负频率处的能量是相同的。
- 非负性:PSD的值总是非负的,因为它代表的是频率处的功率或能量分布。
- 归一化:PSD可以归一化,使得信号在所有频率上的总功率等于信号的方差。
-
∫
−
∞
∞
G
X
(
f
)
d
f
=
E
[
X
2
(
t
)
]
=
R
x
(
0
)
\int_{-\infty}^{\infty} G_X(f) \, df = E[X^2(t)] = Rx(0)
∫−∞∞GX(f)df=E[X2(t)]=Rx(0)
解释: - G X ( f ) G_X(f) GX(f) 表示随机信号的功率谱密度(PSD)。
- E [ X 2 ( t ) ] E[X^2(t)] E[X2(t)] 表示随机信号 X ( t ) X(t) X(t) 的平均功率。
- 这个公式表示在所有频率上积分信号的功率谱密度,结果等于信号的平均功率。
-
∫
−
∞
∞
G
X
(
f
)
d
f
=
E
[
X
2
(
t
)
]
=
R
x
(
0
)
\int_{-\infty}^{\infty} G_X(f) \, df = E[X^2(t)] = Rx(0)
∫−∞∞GX(f)df=E[X2(t)]=Rx(0)
- 如果随机信号是实值信号,那么它的功率谱密度具有一些重要性质:
总结:
- 随机信号的频率成分通过自相关函数的傅里叶变换得到,即为其功率谱密度(PSD)。
- 确定性信号的频率成分直接通过对信号本身进行傅里叶变换得到。
- 对于实值随机信号,PSD是对称的,非负的,并且可以表示信号在不同频率上的功率分布。