如何计算Hann窗口长度的平均值

Hann 窗的定义

Hann 窗通常定义为:

w ( n ) = 0.5 ( 1 − cos ⁡ ( 2 π n L − 1 ) ) w(n) = 0.5 \left(1 - \cos\left(\frac{2\pi n}{L - 1}\right)\right) w(n)=0.5(1cos(L12πn))

其中:

  • n n n 是样本索引,范围为 0 0 0 L − 1 L - 1 L1
  • L L L 是窗口长度

计算 ∣ w ( n ) ∣ 2 |w(n)|^2 w(n)2 的平均值

我们需要计算:

1 L ∑ n = 0 L − 1 ∣ w ( n ) ∣ 2 = 1 L ∑ n = 0 L − 1 [ 0.5 ( 1 − cos ⁡ ( 2 π n L − 1 ) ) ] 2 \frac{1}{L} \sum_{n=0}^{L-1} |w(n)|^2 = \frac{1}{L} \sum_{n=0}^{L-1} \left[0.5 \left(1 - \cos\left(\frac{2\pi n}{L - 1}\right)\right)\right]^2 L1n=0L1w(n)2=L1n=0L1[0.5(1cos(L12πn))]2

展开平方:

∣ w ( n ) ∣ 2 = [ 0.5 ( 1 − cos ⁡ ( 2 π n L − 1 ) ) ] 2 = 0.25 ( 1 − 2 cos ⁡ ( 2 π n L − 1 ) + cos ⁡ 2 ( 2 π n L − 1 ) ) |w(n)|^2 = \left[0.5 \left(1 - \cos\left(\frac{2\pi n}{L - 1}\right)\right)\right]^2 = 0.25 \left(1 - 2\cos\left(\frac{2\pi n}{L - 1}\right) + \cos^2\left(\frac{2\pi n}{L - 1}\right)\right) w(n)2=[0.5(1cos(L12πn))]2=

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值