Hann 窗的定义
Hann 窗通常定义为:
w ( n ) = 0.5 ( 1 − cos ( 2 π n L − 1 ) ) w(n) = 0.5 \left(1 - \cos\left(\frac{2\pi n}{L - 1}\right)\right) w(n)=0.5(1−cos(L−12πn))
其中:
- n n n 是样本索引,范围为 0 0 0 到 L − 1 L - 1 L−1
- L L L 是窗口长度
计算 ∣ w ( n ) ∣ 2 |w(n)|^2 ∣w(n)∣2 的平均值
我们需要计算:
1 L ∑ n = 0 L − 1 ∣ w ( n ) ∣ 2 = 1 L ∑ n = 0 L − 1 [ 0.5 ( 1 − cos ( 2 π n L − 1 ) ) ] 2 \frac{1}{L} \sum_{n=0}^{L-1} |w(n)|^2 = \frac{1}{L} \sum_{n=0}^{L-1} \left[0.5 \left(1 - \cos\left(\frac{2\pi n}{L - 1}\right)\right)\right]^2 L1n=0∑L−1∣w(n)∣2=L1n=0∑L−1[0.5(1−cos(L−12πn))]2
展开平方:
∣ w ( n ) ∣ 2 = [ 0.5 ( 1 − cos ( 2 π n L − 1 ) ) ] 2 = 0.25 ( 1 − 2 cos ( 2 π n L − 1 ) + cos 2 ( 2 π n L − 1 ) ) |w(n)|^2 = \left[0.5 \left(1 - \cos\left(\frac{2\pi n}{L - 1}\right)\right)\right]^2 = 0.25 \left(1 - 2\cos\left(\frac{2\pi n}{L - 1}\right) + \cos^2\left(\frac{2\pi n}{L - 1}\right)\right) ∣w(n)∣2=[0.5(1−cos(L−12πn))]2=