如何计算Hann窗口长度的平均值

Hann 窗的定义

Hann 窗通常定义为:

w ( n ) = 0.5 ( 1 − cos ⁡ ( 2 π n L − 1 ) ) w(n) = 0.5 \left(1 - \cos\left(\frac{2\pi n}{L - 1}\right)\right) w(n)=0.5(1cos(L12πn))

其中:

  • n n n 是样本索引,范围为 0 0 0 L − 1 L - 1 L1
  • L L L 是窗口长度

计算 ∣ w ( n ) ∣ 2 |w(n)|^2 w(n)2 的平均值

我们需要计算:

1 L ∑ n = 0 L − 1 ∣ w ( n ) ∣ 2 = 1 L ∑ n = 0 L − 1 [ 0.5 ( 1 − cos ⁡ ( 2 π n L − 1 ) ) ] 2 \frac{1}{L} \sum_{n=0}^{L-1} |w(n)|^2 = \frac{1}{L} \sum_{n=0}^{L-1} \left[0.5 \left(1 - \cos\left(\frac{2\pi n}{L - 1}\right)\right)\right]^2 L1n=0L1w(n)2=L1n=0L1[0.5(1cos(L12πn))]2

展开平方:

∣ w ( n ) ∣ 2 = [ 0.5 ( 1 − cos ⁡ ( 2 π n L − 1 ) ) ] 2 = 0.25 ( 1 − 2 cos ⁡ ( 2 π n L − 1 ) + cos ⁡ 2 ( 2 π n L − 1 ) ) |w(n)|^2 = \left[0.5 \left(1 - \cos\left(\frac{2\pi n}{L - 1}\right)\right)\right]^2 = 0.25 \left(1 - 2\cos\left(\frac{2\pi n}{L - 1}\right) + \cos^2\left(\frac{2\pi n}{L - 1}\right)\right) w(n)2=[0.5(1cos(L12πn))]2=0.25(12cos(L12πn)+cos2(L12πn))

因此,平均值变为:

1 L ∑ n = 0 L − 1 ∣ w ( n ) ∣ 2 = 0.25 [ 1 L ∑ n = 0 L − 1 1 − 2 ⋅ 1 L ∑ n = 0 L − 1 cos ⁡ ( 2 π n L − 1 ) + 1 L ∑ n = 0 L − 1 cos ⁡ 2 ( 2 π n L − 1 ) ] \frac{1}{L} \sum_{n=0}^{L-1} |w(n)|^2 = 0.25 \left[ \frac{1}{L} \sum_{n=0}^{L-1} 1 - 2 \cdot \frac{1}{L} \sum_{n=0}^{L-1} \cos\left(\frac{2\pi n}{L - 1}\right) + \frac{1}{L} \sum_{n=0}^{L-1} \cos^2\left(\frac{2\pi n}{L - 1}\right) \right] L1n=0L1w(n)2=0.25[L1n=0L112L1n=0L1cos(L12πn)+L1n=0L1cos2(L12πn)]

逐项计算:

  1. 第一项

1 L ∑ n = 0 L − 1 1 = L L = 1 \frac{1}{L} \sum_{n=0}^{L-1} 1 = \frac{L}{L} = 1 L1n=0L11=LL=1

  1. 第二项

1 L ∑ n = 0 L − 1 cos ⁡ ( 2 π n L − 1 ) \frac{1}{L} \sum_{n=0}^{L-1} \cos\left(\frac{2\pi n}{L - 1}\right) L1n=0L1cos(L12πn)

对于 n n n 0 0 0 L − 1 L - 1 L1 2 π n L − 1 \frac{2\pi n}{L - 1} L12πn 覆盖了一个完整的周期 0 0 0 2 π 2\pi 2π。因此,余弦函数在一个完整周期上的平均值为零:

1 L ∑ n = 0 L − 1 cos ⁡ ( 2 π n L − 1 ) = 0 \frac{1}{L} \sum_{n=0}^{L-1} \cos\left(\frac{2\pi n}{L - 1}\right) = 0 L1n=0L1cos(L12πn)=0

  1. 第三项

1 L ∑ n = 0 L − 1 cos ⁡ 2 ( 2 π n L − 1 ) \frac{1}{L} \sum_{n=0}^{L-1} \cos^2\left(\frac{2\pi n}{L - 1}\right) L1n=0L1cos2(L12πn)

利用三角恒等式 cos ⁡ 2 ( x ) = 1 + cos ⁡ ( 2 x ) 2 \cos^2(x) = \frac{1 + \cos(2x)}{2} cos2(x)=21+cos(2x),我们有:

cos ⁡ 2 ( 2 π n L − 1 ) = 1 + cos ⁡ ( 4 π n L − 1 ) 2 \cos^2\left(\frac{2\pi n}{L - 1}\right) = \frac{1 + \cos\left(\frac{4\pi n}{L - 1}\right)}{2} cos2(L12πn)=21+cos(L14πn)

因此,

1 L ∑ n = 0 L − 1 cos ⁡ 2 ( 2 π n L − 1 ) = 1 2 [ 1 L ∑ n = 0 L − 1 1 + 1 L ∑ n = 0 L − 1 cos ⁡ ( 4 π n L − 1 ) ] \frac{1}{L} \sum_{n=0}^{L-1} \cos^2\left(\frac{2\pi n}{L - 1}\right) = \frac{1}{2} \left[ \frac{1}{L} \sum_{n=0}^{L-1} 1 + \frac{1}{L} \sum_{n=0}^{L-1} \cos\left(\frac{4\pi n}{L - 1}\right) \right] L1n=0L1cos2(L12πn)=21[L1n=0L11+L1n=0L1cos(L14πn)]

同理, cos ⁡ ( 4 π n L − 1 ) \cos\left(\frac{4\pi n}{L - 1}\right) cos(L14πn) 在一个完整周期上的平均值也为零,因此:

1 L ∑ n = 0 L − 1 cos ⁡ ( 4 π n L − 1 ) = 0 \frac{1}{L} \sum_{n=0}^{L-1} \cos\left(\frac{4\pi n}{L - 1}\right) = 0 L1n=0L1cos(L14πn)=0

所以,

1 L ∑ n = 0 L − 1 cos ⁡ 2 ( 2 π n L − 1 ) = 1 2 ⋅ 1 = 0.5 \frac{1}{L} \sum_{n=0}^{L-1} \cos^2\left(\frac{2\pi n}{L - 1}\right) = \frac{1}{2} \cdot 1 = 0.5 L1n=0L1cos2(L12πn)=211=0.5

综合所有项

将各项结果代入平均值公式:

1 L ∑ n = 0 L − 1 ∣ w ( n ) ∣ 2 = 0.25 [ 1 − 2 ⋅ 0 + 0.5 ] = 0.25 × 1.5 = 0.375 \frac{1}{L} \sum_{n=0}^{L-1} |w(n)|^2 = 0.25 \left[ 1 - 2 \cdot 0 + 0.5 \right] = 0.25 \times 1.5 = 0.375 L1n=0L1w(n)2=0.25[120+0.5]=0.25×1.5=0.375

结论

通过上述计算,我们得出:

1 L ∑ n = 0 L − 1 ∣ w ( n ) ∣ 2 = 0.375 \frac{1}{L} \sum_{n=0}^{L-1} |w(n)|^2 = 0.375 L1n=0L1w(n)2=0.375

这意味着,Hann 窗在窗口长度上的平均值为 0.375。这一结果说明,应用 Hann 窗会导致信号的有效幅度降低,从而引起信噪比(SNR)的降低,这就是所谓的处理损失(Processing Loss)

直观理解

  • 能量衰减:Hann 窗通过对信号的每个样本进行加权(特别是在窗口的边缘部分),减少了信号的整体能量。
  • 处理损失:这种能量的减少直接导致了信号的信噪比降低,具体表现为平均能量降低到原来的 37.5%。

补充说明

在实际应用中,为了补偿处理损失,通常会对加窗后的信号进行增益调整。例如,可以将加窗后的信号幅度乘以一个系数,以恢复信号的原始能量水平。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值