Kronig-Penney 模型的核心是研究电子在一维周期性势场中运动时的行为,从而解释固体中的能带和禁带形成。这个公式的推导涉及到量子力学中的波函数匹配以及布洛赫定理的应用。以下是公式的推导思路和关键步骤:
1. 设定周期性势场
Kronig-Penney 模型假设势场是周期性分布的,由一系列方势垒和间隔组成。在每个周期中,势场 V ( x ) V(x) V(x) 可以分为两部分:
- 势垒区(宽度为 b b b,势能 V 0 V_0 V0):电子在这个区域内运动受到较高的势能。
- 间隔区(宽度为 a a a,势能 V = 0 V = 0 V=0):电子在这个区域内自由运动,不受势能的影响。
假设势场的周期为 a + b a + b a+b,即势场重复分布在距离 x = 0 , a + b , 2 ( a + b ) , … x = 0, a + b, 2(a + b), \dots x=0,a+b,2(a+b),… 处。
2. 波函数解的形式
根据薛定谔方程,波函数在势垒区和间隔区的形式不同:
-
在间隔区(势能 V = 0 V = 0 V=0):
当势能为零时,薛定谔方程的解为平面波形式,即:
ψ ( x ) = A e i α x + B e − i α x \psi(x) = A e^{i \alpha x} + B e^{-i \alpha x} ψ(x)=Aeiαx+Be−iαx
其中 α = 2 m E ℏ \alpha = \frac{\sqrt{2mE}}{\hbar} α=ℏ2mE 表示波数, E E E 是电子的总能量。
-
在势垒区(势能 V = V 0 V = V_0 V=V0):
在势垒区,电子的总能量 E E E 小于势能 V 0 V_0 V0,因此动能为负,波函数为指数衰减的形式:
ψ ( x ) = C e β x + D e − β x \psi(x) = C e^{\beta x} + D e^{-\beta x} ψ(x)=Ceβx+De−βx
其中 β = 2 m ( V 0 − E ) ℏ \beta = \frac{\sqrt{2m(V_0 - E)}}{\hbar} β=ℏ2m(V0−E) 表示衰减系数。
3. 波函数的匹配条件
在每个势垒的边界(例如,间隔区和势垒区的交界处),波函数和它的导数必须连续。即在边界点 x = 0 x = 0 x=0 和 x = a + b x = a + b x=a+b 处满足:
- 波函数的值连续: ψ 左 ( x ) = ψ 右 ( x ) \psi_{\text{左}}(x) = \psi_{\text{右}}(x) ψ左(x)=ψ右(x)
- 波函数的导数连续: ψ 左 ′ ( x ) = ψ 右 ′ ( x ) \psi'_{\text{左}}(x) = \psi'_{\text{右}}(x) ψ左′(x)=ψ右′(x)
通过在每个边界处应用这些条件,可以得到一组方程,将波函数的系数联系起来。
4. 应用布洛赫定理
布洛赫定理表明,在周期性势场中,波函数可以表示为:
ψ ( x + a + b ) = e i k ( a + b ) ψ ( x ) \psi(x + a + b) = e^{i k (a + b)} \psi(x) ψ(x+a+b)=eik(a+b)ψ(x)
其中 k k k 是波向量。这个性质反映了波函数的周期性特性。
5. 推导关系式
通过连续性条件和布洛赫定理,可以得到关于 k k k、 α \alpha α、 β \beta β 的方程。最终经过推导得到的关系式为:
cos ( k ( a + b ) ) = cos ( α a ℏ ) cos ( β b ℏ ) − α 2 + β 2 2 α β sin ( α a ℏ ) sin ( β b ℏ ) \cos(k(a + b)) = \cos\left(\frac{\alpha a}{\hbar}\right) \cos\left(\frac{\beta b}{\hbar}\right) - \frac{\alpha^2 + \beta^2}{2\alpha \beta} \sin\left(\frac{\alpha a}{\hbar}\right) \sin\left(\frac{\beta b}{\hbar}\right) cos(k(a+b))=cos(ℏαa)cos(ℏβb)−2αβα2+β2sin(ℏαa)sin(ℏβb)
这个关系式描述了波向量 k k k 与能量 E E E 的关系。
6. 公式的含义:能带和禁带的形成
- 当方程有实数解 k k k 时,电子的能量 E E E 落在**允许带(能带)**中,即在这些能量范围内电子可以稳定存在。
- 当方程无实数解 k k k 时,电子的能量 E E E 落在禁带,即在这些能量范围内电子不能稳定存在。
这个公式揭示了周期性势场中能带和禁带的来源。