噪声功率之所以可以表示为 s 2 = E 1 N 0 2 s^2 = \frac{E_1 N_0}{2} s2=2E1N0 ,是因为这个公式来源于匹配滤波器在接收信号时处理噪声的方式,以及噪声在匹配滤波器输出端的统计特性。
详细解释
要理解这个公式,我们需要一步步分析匹配滤波器在处理噪声时的功率计算过程。
-
匹配滤波器的特性:匹配滤波器被设计成与预期的信号形状(例如一个脉冲信号)相匹配。因此,当接收到信号和噪声的组合时,匹配滤波器会对噪声成分产生影响,并根据滤波器的结构对其进行积分。这样做的目的是为了增强信号成分,同时减少噪声的影响。
-
噪声通过匹配滤波器的积分效果:噪声通常是随机的,它在经过匹配滤波器(例如积分操作)时会被“平均化”。在这个过程中,噪声的方差会和匹配滤波器的带宽以及信号的能量有关。
-
噪声功率公式的推导:
- 输入噪声特性: 白噪声在频域上是平的,即在所有频率上功率谱密度相等
由于考虑双边谱,每边的功率谱密度是 N 0 / 2 N₀/2 N0/2。 假设输入噪声 n ( t ) n(t) n(t) 为零均值的高斯白噪声,双边功率谱密度为 N 0 / 2 N_0/2 N0/2。
- 输入噪声特性: 白噪声在频域上是平的,即在所有频率上功率谱密度相等
1. 首先明确一点:N₀就是单边功率谱密度,单位是V²/Hz
2. 现在我们做个比喻:
- 假设你有100元钱
- 如果放在左边口袋50元,右边口袋50元,这就像双边谱
- 如果全放在一个口袋里100元,这就像单边谱
3. 在我们这个问题中:
- 用的是单边谱N₀ (就像100元都在一个口袋)
- 计算时,积分在整个频段(-∞,+∞)上进行
- 所以需要把功率平均分配到正负频率上
- 这就导致了要除以2
4. 所以最终:
σ² = E₁N₀/2
简单说:这个除以2是因为我们用单边谱密度N₀去做双边积分时,需要把功率平均分到正负频率上。
-
匹配滤波器的频率响应: 我们知道匹配滤波器的冲激响应 h(t) 是输入信号 s ( t ) s(t) s(t) 的时间反转共轭: h ( t ) = s ∗ ( T − t ) h(t) = s^*(T-t) h(t)=s∗(T−t),其中 T 是信号持续时间.匹配滤波器的频率响应 H ( f ) H(f) H(f)为目标信号 s ( t ) s(t) s(t)的共轭复数形式,即 H ( f ) = S ∗ ( f ) H(f) = S^*(f) H(f)=S∗(f),其中 S ( f ) S(f) S(f)是 s ( t ) s(t) s(t)的傅里叶变换。
-
输出噪声功率谱密度: 经过匹配滤波器后,输出噪声的功率谱密度 P n o ( f ) P_{n_o}(f) Pno(f)为输入噪声功率谱密度与滤波器频率响应幅度平方的乘积:
P n o ( f ) = N 0 2 ⋅ ∣ H ( f ) ∣ 2 P_{n_o}(f) = \frac{N_0}{2} \cdot |H(f)|^2 Pno(f)=2N0⋅∣H(f)∣2
-
输出噪声方差: 输出噪声方差 σ n o 2 \sigma_{n_o}^2 σno2为输出噪声功率谱密度在频域上的积分:
σ n o 2 = ∫ − ∞ ∞ P n o ( f ) d f = ∫ − ∞ ∞ N 0 2 ⋅ ∣ H ( f ) ∣ 2 d f \sigma_{n_o}^2 = \int_{-\infty}^{\infty} P_{n_o}(f) \, df = \int_{-\infty}^{\infty} \frac{N_0}{2} \cdot |H(f)|^2 \, df σno2=∫−∞∞Pno(f)df=∫−∞∞2N0⋅∣H(f)∣2df
-
匹配滤波器的能量特性: 匹配滤波器的频率响应 H ( f ) H(f) H(f)的平方积分等于目标信号 s ( t ) s(t) s(t)的能量 E s E_s Es:
∫ − ∞ ∞ ∣ H ( f ) ∣ 2 d f = ∫ − ∞ ∞ ∣ S ( f ) ∣ 2 d f = E s \int_{-\infty}^{\infty} |H(f)|^2 \, df = \int_{-\infty}^{\infty} |S(f)|^2 \, df = E_s ∫−∞∞∣H(f)∣2df=∫−∞∞∣S(f)∣2df=Es
-
输出噪声方差的表达式: 将上述结果代入输出噪声方差的表达式,得到:
σ n o 2 = N 0 2 ⋅ E s \sigma_{n_o}^2 = \frac{N_0}{2} \cdot E_s σno2=2N0⋅Es
匹配滤波器的输出噪声方差 σ n o 2 \sigma_{n_o}^2 σno2等于输入噪声单边功率谱密度 N 0 N_0 N0与目标信号能量 E s E_s Es的乘积再除以 2。这表明,目标信号的能量越大,匹配滤波器输出的噪声方差也越大。