为何通过过采样可以提升有效分辨率,以及公式 Δ Bits = 0.5 × log ⁡ 2 ( OSR ) ΔBits=0.5×log 2 ​ (OSR) 的来源

1. 量化噪声基础

在使用 n n n-位量化器对模拟信号进行量化时,会引入一种误差,称为量化噪声。这种噪声通常被建模为均匀分布在量化区间内的随机变量。

  • 量化噪声功率 ( N q N_q Nq) 对于位宽为 n n n、满量程范围为 V F S V_{FS} VFS 的量化器:

    N q = V F S 2 12 × 2 2 n N_q = \frac{V_{FS}^2}{12 \times 2^{2n}} Nq=12×22nVFS2

    (这里的除以 12 是因为均匀分布的方差公式。)

  • 信号功率 ( P s P_s Ps)(假设为满量程的正弦波):

    P s = V F S 2 8 P_s = \frac{V_{FS}^2}{8} Ps=8VFS2

  • 未过采样时的信噪比 (SNR)

    SNR base = 6.02 n + 1.76  dB \text{SNR}_{\text{base}} = 6.02n + 1.76 \ \text{dB} SNRbase=6.02n+1.76 dB

    这是量化位数 n n n 与信噪比关系的经典公式。


2. 过采样对量化噪声的影响

过采样会将采样频率 ( f s f_s fs) 提高到高于奈奎斯特率的水平。其关键影响如下:

  • 量化噪声频谱:量化噪声在频率范围 0 0 0 f s / 2 f_s/2 fs/2 内均匀分布。
  • 信号带宽 ( B B B):信号的实际带宽小于奈奎斯特带宽。

过采样时,采样频率 f s f_s fs 增加,相同的总量化噪声会被分散到更宽的频率范围,从而信号带宽内的噪声功率减少。

  • 过采样时信号带宽内的噪声功率 ( N q ′ N_q' Nq)

    N q ′ = N q × B f s / 2 = N q × 1 OSR N_q' = N_q \times \frac{B}{f_s/2} = N_q \times \frac{1}{\text{OSR}} Nq=Nq×fs/2B=Nq×OSR1

    其中 过采样比 (OSR) 定义为:

    OSR = f s 2 B \text{OSR} = \frac{f_s}{2B} OSR=2Bfs


3. 信噪比提升的计算

信号带宽内的噪声功率减少导致信噪比(SNR)提高。

  • 过采样后的信噪比 ( SNR OSR \text{SNR}_{\text{OSR}} SNROSR)

    SNR OSR = SNR base + 10 log ⁡ 10 ( OSR ) \text{SNR}_{\text{OSR}} = \text{SNR}_{\text{base}} + 10 \log_{10}(\text{OSR}) SNROSR=SNRbase+10log10(OSR)

    这一公式表明,由于过采样,信噪比提升了 10 log ⁡ 10 ( OSR ) 10 \log_{10}(\text{OSR}) 10log10(OSR) dB。


4. 信噪比提升与位数的关系

每增加 1 位量化位数,信噪比大约提升 6.02 dB

  • 每位对应的信噪比提升

    Δ SNR 每位 = 6.02  dB \Delta \text{SNR}_{\text{每位}} = 6.02 \ \text{dB} ΔSNR每位=6.02 dB

因此,因过采样增加的有效位数 ( Δ Bits \Delta \text{Bits} ΔBits) 可表示为:

Δ Bits = Δ SNR OSR 6.02 \Delta \text{Bits} = \frac{\Delta \text{SNR}_{\text{OSR}}}{6.02} ΔBits=6.02ΔSNROSR

Δ SNR OSR = 10 log ⁡ 10 ( OSR ) \Delta \text{SNR}_{\text{OSR}} = 10 \log_{10}(\text{OSR}) ΔSNROSR=10log10(OSR) 代入:

Δ Bits = 10 log ⁡ 10 ( OSR ) 6.02 \Delta \text{Bits} = \frac{10 \log_{10}(\text{OSR})}{6.02} ΔBits=6.0210log10(OSR)


5. 公式简化

使用对数性质和常数简化:

  • 将 10 底对数转换为 2 底对数

    log ⁡ 10 ( OSR ) = log ⁡ 2 ( OSR ) log ⁡ 2 ( 10 ) ≈ 0.301 × log ⁡ 2 ( OSR ) \log_{10}(\text{OSR}) = \frac{\log_2(\text{OSR})}{\log_2(10)} \approx 0.301 \times \log_2(\text{OSR}) log10(OSR)=log2(10)log2(OSR)0.301×log2(OSR)

  • 计算 SNR 每位的比例

    10 6.02 ≈ 1.66 \frac{10}{6.02} \approx 1.66 6.02101.66

综合得:

Δ Bits = 10 × 0.301 × log ⁡ 2 ( OSR ) 6.02 ≈ 0.5 × log ⁡ 2 ( OSR ) \Delta \text{Bits} = \frac{10 \times 0.301 \times \log_2(\text{OSR})}{6.02} \approx 0.5 \times \log_2(\text{OSR}) ΔBits=6.0210×0.301×log2(OSR)0.5×log2(OSR)

因此:

Δ Bits = 0.5 × log ⁡ 2 ( OSR ) \Delta \text{Bits} = 0.5 \times \log_2(\text{OSR}) ΔBits=0.5×log2(OSR)


6. 直观理解

  • 每次过采样倍率翻倍

    • 当过采样比 ( OSR \text{OSR} OSR) 翻倍时, log ⁡ 2 ( OSR ) \log_2(\text{OSR}) log2(OSR) 增加 1。
    • 因此, Δ Bits \Delta \text{Bits} ΔBits 增加 0.5 × 1 = 0.5 0.5 \times 1 = 0.5 0.5×1=0.5 位。
  • 意义

    • 每当过采样倍率翻倍,有效分辨率增加 0.5 位

7. 在具体场景中的应用

  • 已知条件

    • OSR = 512

    • log ⁡ 2 ( 512 ) = 9 \log_2(512) = 9 log2(512)=9

    • 因此:

      Δ Bits = 0.5 × 9 = 4.5  位 \Delta \text{Bits} = 0.5 \times 9 = 4.5 \ \text{位} ΔBits=0.5×9=4.5 

这表明通过 512 倍的过采样,可以获得 额外的 4.5 位分辨率


8. 抖动噪声的影响

抖动噪声是为了随机化量化误差并线性化系统而加入的噪声。然而,抖动的加入会略微提高噪声底,从而降低信噪比。

  • 抖动的影响

    • 使信噪比降低约 0.5 位
  • 最终有效位数 (ENOB)

    ENOB = 原始位数 + Δ Bits − 抖动损失 \text{ENOB} = \text{原始位数} + \Delta \text{Bits} - \text{抖动损失} ENOB=原始位数+ΔBits抖动损失

    ENOB = 12 + 4.5 − 0.5 = 16  位 \text{ENOB} = 12 + 4.5 - 0.5 = 16 \ \text{位} ENOB=12+4.50.5=16 


9. 总结

  • 公式为何成立?

    • 过采样通过将量化噪声分散到更宽的频率范围内,降低了信号带宽内的噪声。

    • 信噪比随过采样比 OSR \text{OSR} OSR 的对数(以 2 为底)增长,具体为 10 log ⁡ 10 ( OSR ) 10 \log_{10}(\text{OSR}) 10log10(OSR) dB。

    • 每位分辨率对应约 6.02 dB 的信噪比增长。

    • 综合这些关系,得到公式:

      Δ Bits = 0.5 × log ⁡ 2 ( OSR ) \Delta \text{Bits} = 0.5 \times \log_2(\text{OSR}) ΔBits=0.5×log2(OSR)

  • 关键点

    • 过采样通过扩展噪声频谱来降低信号带宽内的噪声。
    • 每次过采样倍率翻倍,有效分辨率增加 0.5 位
    • 抖动噪声改善了量化误差的线性化,但略微降低了整体精度(本例中约 0.5 位)。

10. 实际意义

理解这一关系对于设计高分辨率数字系统至关重要。在不增加量化器位数的情况下,可以通过合理的过采样和抖动技术大幅提升系统性能。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值