线性代数 ̄O ̄)ノ矩阵之章

线性代数 ̄O ̄)ノ矩阵之章

一、前言

一直感觉自己数论很拉胯,但没时间补,现在开学又发现线代自己学得也一般,所以希望通过这个题单来提高自己数论的能力和线代的能力,争取考高一些ヾ(・ω・`。)

二、模板1:矩阵快速幂

题目背景

矩阵快速幂

题目描述

给定 n×n 的矩阵 A,求Ak

输入格式

第一行两个整数 n,k 接下来 n 行,每行 n 个整数,第 ii 行的第 j 的数表示 Ai,j

输出格式

输出Ak

n 行,每行 n 个数,第 i 行第 j 个数表示 i,j,每个元素对 10^9+7 取模。

输入输出样例

输入 #1
2 1
1 1
1 1
输出 #1
1 1
1 1

说明/提示

【数据范围】
对于 100% 的数据:1≤n≤100,∣Ai,j​∣≤1000

这道题原理和快速幂一样,但多了个矩阵,所以我们乘法运算符要把重载为矩阵的乘法,也就需要我们学会矩阵的乘法和运算符重载

AC code

#include <bits/stdc++.h>
//#pragma GCC optimize(3,"Ofast","inline")
//#define re register
#define ll long long
//#define ull unsigned long long
#define r read()
#define mod 1000000007
using namespace std;
速读
inline ll read();
并查集的查找
//int found(int k);
辗转相除法------返回最大公因数
//int gcd(int p,int q);
阶乘
//int fac(int k);
st表
//int st[10000][30];
//int lg[10000];
初始化
//void initST(int n);
查找
//int seekST(int le, int ri);
线性基
//ll p[101];
添加
//void add_key(ll x);
int n;
//矩阵结构体
struct matrix{
    ll ma[105][105];
    matrix(){
        memset(ma,0,sizeof(ma));
    }
    inline void build(){
        for(int i = 1; i <= n ; i++){
            ma[i][i] = 1;

        }
    }
}m;
ll te;
inline void init(){
    n = r;
    te = r;
//    cout<<"check:"<<te<<endl;
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= n; j++){
            m.ma[i][j] = r;
        }

    }
}
//运算符重载
matrix operator *(const matrix &a, const matrix &b){
    matrix c;
    for(int k = 1; k <= n; k++){
        for(int i = 1; i <= n; i++){
            for(int j = 1; j <= n; j++){
              c.ma[i][j] = (c.ma[i][j] + a.ma[i][k] * b.ma[k][j] % mod)%mod;
            }
        }
    }
    return c;
}

int main()
{
    ios::sync_with_stdio(false);
    init();
    matrix mat;
    mat.build();
    do{
//        cout<<"check:"<<te<<endl;
        if(te&1){
            mat = mat * m;
        }
            m = m * m;
            te >>= 1;
    }while(te);
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= n; j++){
            printf("%lld ",mat.ma[i][j]);
        }
        printf("\n");
    }
    return 0;
}
//速读
inline ll read()
{
	ll x=0,f=1;char ch=getchar();
	while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
	while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
	return x*f;
}
并查集
//int f[1];
//int found(int k){
//    if(f[k] == k){
//        return k;
//    }
//    return f[k] = found(f[k]);
//}
辗转相除法
//int gcd(int p,int q){
//  int t = p % q;
//  return t==0?q:gcd(q,t);
//}
阶乘
//int fac(int k){
//    int ans = 1;
//    for(int i = 1; i<= k; i++){
//        ans *= i;
//    }
//    return ans;
//}
初始化st表
//void initST(int n){
//    for(int i = 1; i <= n; i++){
//        int temp = r;
//        st[i + n][0] = st[i + n + n][0]= st[i][0] = temp;
//    }
//    for(int i = 2; i <= n * 3; i++){
//        lg[i] = lg[i >> 1] + 1;
//    }
//    int ln = lg[n + n + n];
//    for(int i = 1; i <= ln; i++){
//        for(int j = 1; j + (1 << (i - 1)) - 1<= n * 3; j++){
//            st[j][i] = max(st[j][i-1],st[j+(1 << (i - 1))][i-1]);
//        }
//    }
//}
查找st表
//int seekST(int le, int ri){
//    int len = ri - le + 1;
//    int q = lg[len];
//    return max(st[le][q],st[ri - (1 << q) + 1][q]);
//}
添加到线性基
//void add_key(ll x){
//    for(int i = 62; i >= 0; i--)
//	{
//		if(!(x >> (ll)i))
//			continue;
//		if(!p[i])
//		{
//			p[i] = x;
//			break;
//		}
//		x ^= p[i];
//	}
//}

三、模板2:矩阵加速(数列)

题目描述

已知一个数列 a,它满足:

在这里插入图片描述

输入格式

第一行一个整数 T,表示询问个数。

以下 T 行,每行一个正整数 n

输出格式

每行输出一个非负整数表示答案。

输入输出样例

输入 #1
3
6
8
10
输出 #1
4
9
19

说明/提示

  • 对于 30% 的数据 n≤100;
  • 对于 60% 的数据 n≤2×10^7;
  • 对于 100% 的数据 1≤T≤100,1≤n≤2×10^9。

矩阵加速其实就是利用矩阵的性质,把递推数列变成快速幂问题,很多常见的递推数列都能通过这种转化来加速。

这种问题的关键是找到初始矩阵,初始矩阵需要通过写数列各项的关系式来得到

AC code

#include <bits/stdc++.h>
//#pragma GCC optimize(3,"Ofast","inline")
//#define re register
#define ll long long
//#define ull unsigned long long
#define r read()
ll mod = 1e9 +7;
using namespace std;
//速读
inline int read();
并查集的查找
//int found(int k);
辗转相除法------返回最大公因数
//int gcd(int p,int q);
阶乘
//int fac(int k);
st表
//int st[10000][30];
//int lg[10000];
初始化
//void initST(int n);
查找
//int seekST(int le, int ri);
线性基
//ll p[101];
添加
//void add_key(ll x);
class mat{
    public:
        ll m[5][5];
        mat(){
            memset(m,0,sizeof(m));
        }
};
mat a,b;
mat operator*(const mat & a, const mat & b){
    mat c;
    for(int k = 1; k <= 3; k++){
        for(int i = 1; i <= 3; i++){
            for(int j = 1; j <= 3; j++){
                c.m[i][j] = (c.m[i][j] + a.m[i][k] * b.m[k][j] % mod)%mod;
            }
        }
    }
    return c;
}
void init(){
    memset(a.m,0,sizeof(a.m));
    memset(b.m,0,sizeof(b.m));
    b.m[1][1] = b.m[1][3] = b.m[2][1] = b.m[3][2] = 1;
    for(int i = 1; i <= 3; i++){
        a.m[i][i] = 1;
    }
}
int main()
{
    ios::sync_with_stdio(false);
    int t = r;
    for(int i = 1; i <= t; i++){
        int n = r;
        if(n <= 3){
            cout<<"1"<<endl;
            continue;
        }
        init();
        while(n){
            if(n & 1){
                a = a * b;
            }
            b = b * b;
            n /= 2;
        }
        cout<<a.m[2][1]<<endl;
    }
    return 0;
}
//速读
inline int read()
{
	int x=0,f=1;char ch=getchar();
	while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
	while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
	return x*f;
}
并查集
//int f[1];
//int found(int k){
//    if(f[k] == k){
//        return k;
//    }
//    return f[k] = found(f[k]);
//}
辗转相除法
//int gcd(int p,int q){
//  int t = p % q;
//  return t==0?q:gcd(q,t);
//}
阶乘
//int fac(int k){
//    int ans = 1;
//    for(int i = 1; i<= k; i++){
//        ans *= i;
//    }
//    return ans;
//}
初始化st表
//void initST(int n){
//    for(int i = 1; i <= n; i++){
//        int temp = r;
//        st[i + n][0] = st[i + n + n][0]= st[i][0] = temp;
//    }
//    for(int i = 2; i <= n * 3; i++){
//        lg[i] = lg[i >> 1] + 1;
//    }
//    int ln = lg[n + n + n];
//    for(int i = 1; i <= ln; i++){
//        for(int j = 1; j + (1 << (i - 1)) - 1<= n * 3; j++){
//            st[j][i] = max(st[j][i-1],st[j+(1 << (i - 1))][i-1]);
//        }
//    }
//}
查找st表
//int seekST(int le, int ri){
//    int len = ri - le + 1;
//    int q = lg[len];
//    return max(st[le][q],st[ri - (1 << q) + 1][q]);
//}
添加到线性基
//void add_key(ll x){
//    for(int i = 62; i >= 0; i--)
//	{
//		if(!(x >> (ll)i))
//			continue;
//		if(!p[i])
//		{
//			p[i] = x;
//			break;
//		}
//		x ^= p[i];
//	}
//}

四、斐波那契数列

题目背景

懒得写了,斐波那契数列大家懂的

题目描述

请你求出 Fn 的值。

输入格式

一行一个正整数 n

输出格式

输出一行一个整数表示答案。

输入输出样例

输入 #1
5
输出 #1
5
输入 #2
10
输出 #2
55

说明/提示

【数据范围】
对于 60% 的数据,1≤n≤92;
对于 100% 的数据,1≤n<2^63。

这道题对应模板2,求出对应的矩阵数列然后矩阵快速幂,大家可以试着自己推导一下,答案在代码里面有(话说这道题的范围是真的大啊,但后面居然有一样的紫题吊打这道的数据)

AC code

#include <bits/stdc++.h>
#pragma GCC optimize(3,"Ofast","inline")
//#define re register
#define ll long long
#define ull unsigned long long
#define r read()
ll mod =  1000000007;
using namespace std;
//速读
inline ull read();
并查集的查找
//int found(int k);
辗转相除法------返回最大公因数
//int gcd(int p,int q);
阶乘
//int fac(int k);
st表
//int st[10000][30];
//int lg[10000];
初始化
//void initST(int n);
查找
//int seekST(int le, int ri);
线性基
//ll p[101];
添加
//void add_key(ll x);
//快速幂
//ll ksm(ll a, ll b){
//    ll c = 1;
//    while(b){
//        if(b % 2 == 1){
//            c *= a;
//        }
//        a *= a;
//        b >>= 1;
//    }
//    return c;
//}
//线性筛
//void xxs(){
//    bool nums[n];
//    for(int i = 2; i <= n; i++){
//        if(!nums[i]){
//            for(int j = i +i; j <= n; j+=i){
//                nums[j] = 1;
//            }
//        }
//    }
//}
class mat{
public:
    ll ma[5][5];
    mat(){
        memset(ma,0,sizeof(ma));
    }
}a,b;
ull n;
void initma(){
    a.ma[1][1] = a.ma[1][2] = b.ma[1][1] = b.ma[1][2] = b.ma[2][1] = 1;
}
mat operator*(const mat & a, const mat & b){
    mat c;
    for(int k = 1; k <= 2; k++){
        for(int i = 1; i <= 2; i++){
            for(int j = 1; j <= 2; j++){
                c.ma[i][j] = (c.ma[i][j] + a.ma[i][k] * b.ma[k][j]) % mod;
            }
        }
    }
    return c;
}
int main()
{
    ios::sync_with_stdio(false);
    initma();
    cin >> n;
//    cout<<n<<endl;
    if(n <= 2){
        cout<<"1"<<endl;
        return 0;
    }
    n -= 2;
    while(n){
        if( n & 1){
            a = a * b;
        }
        b = b * b;
        n >>= 1;
    }
    cout<<a.ma[1][1] % mod;
    return 0;
}
//速读
inline ull read()
{
	int x=0,f=1;char ch=getchar();
	while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
	while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
	return x*f;
}
并查集
//int f[1];
//int found(int k){
//    if(f[k] == k){
//        return k;
//    }
//    return f[k] = found(f[k]);
//}
辗转相除法
//int gcd(int p,int q){
//  int t = p % q;
//  return t==0?q:gcd(q,t);
//}
阶乘
//int fac(int k){
//    int ans = 1;
//    for(int i = 1; i<= k; i++){
//        ans *= i;
//    }
//    return ans;
//}
初始化st表
//void initST(int n){
//    for(int i = 1; i <= n; i++){
//        int temp = r;
//        st[i + n][0] = st[i + n + n][0]= st[i][0] = temp;
//    }
//    for(int i = 2; i <= n * 3; i++){
//        lg[i] = lg[i >> 1] + 1;
//    }
//    int ln = lg[n + n + n];
//    for(int i = 1; i <= ln; i++){
//        for(int j = 1; j + (1 << (i - 1)) - 1<= n * 3; j++){
//            st[j][i] = max(st[j][i-1],st[j+(1 << (i - 1))][i-1]);
//        }
//    }
//}
查找st表
//int seekST(int le, int ri){
//    int len = ri - le + 1;
//    int q = lg[len];
//    return max(st[le][q],st[ri - (1 << q) + 1][q]);
//}
添加到线性基
//void add_key(ll x){
//    for(int i = 62; i >= 0; i--)
//	{
//		if(!(x >> (ll)i))
//			continue;
//		if(!p[i])
//		{
//			p[i] = x;
//			break;
//		}
//		x ^= p[i];
//	}
//}

五、模板3:高斯消元法

题目背景

Gauss消元

题目描述

给定一个线性方程组,对其求解

输入格式

第一行,一个正整数 n

第二至n+1行,每行 n+1 个整数,为a1,a2⋯anb,代表一组方程。

输出格式

共n行,每行一个数,第 i行为 xi (保留2位小数)

如果不存在唯一解,在第一行输出"No Solution".

输入输出样例

输入 #1
3
1 3 4 5
1 4 7 3
9 3 2 2
输出 #1
-0.97
5.18
-2.39

说明/提示

1≤n≤100,∣ai∣≤104,∣*bi*∣≤104

说是高斯消元法,其实往往用的是效率更高代码更简洁的约旦消元法或者其他变形,但原理都是一样的,就是消元求解,和线代上的求解思路是完全一致的,这里要注意浮点数的不存在判定,不能用!或者 == 0之类的。

AC code

#include <bits/stdc++.h>
#pragma GCC optimize(3,"Ofast","inline")
#define re register
//#define ll long long
//#define ull unsigned long long
#define r read()

using namespace std;
//速读
inline int read();
并查集的查找
//int found(int k);
辗转相除法------返回最大公因数
//int gcd(int p,int q);
阶乘
//int fac(int k);
st表
//int st[10000][30];
//int lg[10000];
初始化
//void initST(int n);
查找
//int seekST(int le, int ri);
线性基
//ll p[101];
添加
//void add_key(ll x);
//快速幂
//double ksm(double a, double b){
//    double c = 1;
//    while(b){
//        if(b % 2 == 1){
//            c *= a;
//        }
//        a *= a;
//        b >>= 1;
//    }
//    return c;
//}
//线性筛
//void xxs(){
//    bool nums[n];
//    for(int i = 2; i <= n; i++){
//        if(!nums[i]){
//            for(int j = i +i; j <= n; j+=i){
//                nums[j] = 1;
//            }
//        }
//    }
//}
double m[105][105];
int main()
{
    ios::sync_with_stdio(false);
    int n ;
    cin >> n;
    for(re int i =  1; i <= n; i++){
        for(re int j = 1; j <= n + 1; j++){
            cin >> m[i][j];
        }
    }
    for(re int  i  = 1; i <= n; i++){
        int ma = i;
        for(re int j = i + 1; j <= n; j++){
            if(fabs(m[j][i]) > fabs(m[i][i])){
                ma = j;
            }
        }
        for(re int j = 1; j <= n + 1; j++){
            swap(m[i][j],m[ma][j]);
        }
        if(fabs(m[i][i]) < 0.0001){
            cout<<"No Solution"<<endl;
            return 0;
        }
        for(re int j = 1; j <= n; j++){
            if(j != i ){
                double key = m[j][i] / m[i][i];
                for(re int k = i + 1; k <= n + 1; k++){
                    m[j][k] = m[j][k] - key * m[i][k];
                }
            }
        }
    }
    for(re int i = 1; i <= n; i++){
        printf("%.2lf\n",m[i][n+1] / m[i][i]);
    }
    return 0;
}
//速读
inline int read()
{
	int x=0,f=1;char ch=getchar();
	while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
	while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
	return x*f;
}
并查集
//int f[1];
//int found(int k){
//    if(f[k] == k){
//        return k;
//    }
//    return f[k] = found(f[k]);
//}
辗转相除法
//int gcd(int p,int q){
//  int t = p % q;
//  return t==0?q:gcd(q,t);
//}
阶乘
//int fac(int k){
//    int ans = 1;
//    for(int i = 1; i<= k; i++){
//        ans *= i;
//    }
//    return ans;
//}
初始化st表
//void initST(int n){
//    for(int i = 1; i <= n; i++){
//        int temp = r;
//        st[i + n][0] = st[i + n + n][0]= st[i][0] = temp;
//    }
//    for(int i = 2; i <= n * 3; i++){
//        lg[i] = lg[i >> 1] + 1;
//    }
//    int ln = lg[n + n + n];
//    for(int i = 1; i <= ln; i++){
//        for(int j = 1; j + (1 << (i - 1)) - 1<= n * 3; j++){
//            st[j][i] = max(st[j][i-1],st[j+(1 << (i - 1))][i-1]);
//        }
//    }
//}
查找st表
//int seekST(int le, int ri){
//    int len = ri - le + 1;
//    int q = lg[len];
//    return max(st[le][q],st[ri - (1 << q) + 1][q]);
//}
添加到线性基
//void add_key(ll x){
//    for(int i = 62; i >= 0; i--)
//	{
//		if(!(x >> (ll)i))
//			continue;
//		if(!p[i])
//		{
//			p[i] = x;
//			break;
//		}
//		x ^= p[i];
//	}
//}

六、模板4:矩阵求逆

题目描述

求一个 N×N 的矩阵的逆矩阵。答案对 10^9+7 取模。

输入格式

第一行有一个整数 N,代表矩阵的大小;

接下来 N 行,每行 N 个整数,其中第 i 行第 j 列的数代表矩阵中的元素 aij

输出格式

若矩阵可逆,则输出 N 行,每行 N 个整数,其中第 i 行第 j 列的数代表逆矩阵中的元素 bij,答案对 10^9+7 取模;

否则只输出一行 No Solution

输入输出样例

输入 #1
3
1 2 8
2 5 6
5 1 2
输出 #1
718750005 718750005 968750007
171875001 671875005 296875002
117187501 867187506 429687503
输入 #2
3
3 2 4
7 2 9
2 4 3
输出 #2
No Solution

说明/提示

对 30% 的数据有 N≤100;
对 100% 的数据有 N≤400,所有 0≤aij​<10^9+7。

这道题用到了很多数学原理,比如高斯消元,利用小费马定理求逆元等等,需要比较扎实的线代功底,但代码实现上就还好,基本就是对这个过程的模拟。

AC code

#include <bits/stdc++.h>
#pragma GCC optimize(3,"Ofast","inline")
//#define re register
#define ll long long
//#define ull unsigned long long
#define r read()
using namespace std;
//速读
inline int read();
并查集的查找
//int found(int k);
辗转相除法------返回最大公因数
//int gcd(int p,int q);
阶乘
//int fac(int k);
st表
//int st[10000][30];
//int lg[10000];
初始化
//void initST(int n);
查找
//int seekST(int le, int ri);
线性基
//ll p[101];
添加
//void add_key(ll x);
const ll mo = 1e9 + 7;
//快速幂
ll c,key;
ll ksm(ll a, ll b){
    c = 1;
    while(b){
        if(b & 1){
            c = c * a % mo;
        }
        a = a * a % mo;
        b >>= 1;
    }
    return c;
}
int n,m;
int mat[405][805];
int main()
{
    ios::sync_with_stdio(false);
    int n = r;
    m = 2 * n;
    //初始化
    for(int i = 1; i <= n; i++){
        for(int j = 1; j <= n; j++){
            mat[i][j] = r;
        }
        //构建b矩阵---单位矩阵
        mat[i][i+n] = 1;
    }
    for(int i = 1; i <= n; i++){
        for(int j = i; j <= n; j++){
            //交换出一行对角线上的点不为0
            if(mat[j][i]){
                for(int k = 1; k <= m; k++){
                    swap(mat[i][k],mat[j][k]);
                }
                break;
            }
        }
        //如果没有说明无法高斯消元
        if(!mat[i][i]){
            cout<<"No Solution"<<endl;
            return 0;
        }
        //求逆元以便把对角线上的数字化为1
        key =  ksm(mat[i][i],mo-2);
        //开始转化本行
        for(int j = i; j <= m; j++){
            mat[i][j] = mat[i][j] * key % mo;
        }
        //对其他行进行消元
        for(int j = 1; j <= n; j++){
            if(j != i){
                key = mat[j][i];
                for(int k = i; k <= m; k++){
                    mat[j][k] = (mat[j][k] - key * mat[i][k] % mo + mo) % mo;
                }
            }
        }
    }
    for(int i = 1; i <= n;i++){
        for(int j = n + 1; j <= m; j++){
            printf("%d",mat[i][j]);
            if(j != m){
                printf(" ");
            }
        }
        printf("\n");
    }
    return 0;
}
//速读
inline int read()
{
	int x=0,f=1;char ch=getchar();
	while (!isdigit(ch)){if (ch=='-') f=-1;ch=getchar();}
	while (isdigit(ch)){x=x*10+ch-48;ch=getchar();}
	return x*f;
}
并查集
//int f[1];
//int found(int k){
//    if(f[k] == k){
//        return k;
//    }
//    return f[k] = found(f[k]);
//}
辗转相除法
//int gcd(int p,int q){
//  int t = p % q;
//  return t==0?q:gcd(q,t);
//}
阶乘
//int fac(int k){
//    int ans = 1;
//    for(int i = 1; i<= k; i++){
//        ans *= i;
//    }
//    return ans;
//}
初始化st表
//void initST(int n){
//    for(int i = 1; i <= n; i++){
//        int temp = r;
//        st[i + n][0] = st[i + n + n][0]= st[i][0] = temp;
//    }
//    for(int i = 2; i <= n * 3; i++){
//        lg[i] = lg[i >> 1] + 1;
//    }
//    int ln = lg[n + n + n];
//    for(int i = 1; i <= ln; i++){
//        for(int j = 1; j + (1 << (i - 1)) - 1<= n * 3; j++){
//            st[j][i] = max(st[j][i-1],st[j+(1 << (i - 1))][i-1]);
//        }
//    }
//}
查找st表
//int seekST(int le, int ri){
//    int len = ri - le + 1;
//    int q = lg[len];
//    return max(st[le][q],st[ri - (1 << q) + 1][q]);
//}
添加到线性基
//void add_key(ll x){
//    for(int i = 62; i >= 0; i--)
//	{
//		if(!(x >> (ll)i))
//			continue;
//		if(!p[i])
//		{
//			p[i] = x;
//			break;
//		}
//		x ^= p[i];
//	}
//}

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值