反卷积(上采样)

1. 引言

  卷积层和池化层通常会减少输入的空间维度高和宽,或者使高和宽保持不变,而反卷积层能增加卷积后产生的中间特征图的空间维度。本文讨论的反卷积与PyTorch中反卷积的计算一致,其中卷积核的顺序也与PyTorch中一致。

2. 反卷积的基本操作

  假设数据 I I I [ 0 1 2 3 ] \begin{bmatrix}0&1\\2&3\end{bmatrix} [0213],反卷积核 K K K [ 3 4 1 2 ] \begin{bmatrix}3&4\\1&2\end{bmatrix} [3142],步长为1,填充为0, I I I K K K的反卷积计算过程如下。
在这里插入图片描述

3. 填充

  卷积的填充是为了增加特征图的尺寸,而反卷积的填充是为了减少特征的尺寸,结果是在没进行填充的反卷积结果上去掉上下左右padding行或列。 I I I K K K在步长为1,填充为1的情况下进行反卷积的结果如下。

4. 步长

   I I I K K K在步长为3,填充为0时的反卷积计算过程如下。下图中第三列和第三行没有任何计算结果,默认填0。
在这里插入图片描述

5. 多通道

  下图展示了步长为1,填充为0时的多通道输入和输出的反卷积计算过程。
在这里插入图片描述
  假设输入数据的形状为 h × w h\times w h×w,步长为 [ s h , s w ] [s_h, s_w] [sh,sw],填充为 [ p h , p w ] [p_h, p_w] [ph,pw],反卷积核为 [ k h , k w ] [k_h, k_w] [kh,kw],反卷积后特征图的尺寸为 [ ( h − 1 ) s h − 2 p h + k h , ( w − 1 ) s w − 2 p w + k w ] [(h-1)s_h-2p_h+k_h, (w-1)s_w-2p_w+k_w] [(h1)sh2ph+kh,(w1)sw2pw+kw]

参考

Dive into deep learning 14.10. Transposed Convolution

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值