深度探索:机器学习中的 Rejection Sampling算法原理及其应用

本文详细介绍了RejectionSampling算法,包括其理论基础、工作原理、Python实现,优缺点分析,以及在金融风险建模和生物信息学中的应用。同时,文章对比了RejectionSampling与MCMC和重要性采样的区别,指出未来研究方向主要是优化提议分布和算法改进。
摘要由CSDN通过智能技术生成

目录

1. 引言与背景

2. Rejection Sampling定理

3. 算法原理

4. 算法实现

5. 优缺点分析

优点:

缺点:

6. 案例应用

7. 对比与其他算法

8. 结论与展望


1. 引言与背景

机器学习领域中,有效且高效地从复杂的概率分布中抽样是一项核心任务,它对于模型训练、推断以及统计模拟至关重要。在诸多抽样方法中,Rejection Sampling作为一种简单直观的非参数性采样技术,凭借其易于理解、无需显式知道目标分布密度函数的形式等特性,在处理难以直接采样的复杂分布时展现出独特价值。本篇文章将系统地介绍Rejection Sampling算法,包括其理论基础、工作原理、实现细节、优缺点分析、实际应用案例、与其他抽样方法的对比,以及对未来的展望。

2. Rejection Sampling定理

Rejection Sampling方法基于一个基本定理,通常称为“接受-拒绝”定理。该定理指出,给定一个不可直接采样的目标概率分布p\left ( x \right ),如果能找到一个易于采样的提议分布q\left ( x \right ),且该提议分布在所有可能的x上严格大于目标分布,即q\left ( x \right )\geq k\cdot p\left ( x \right ),其中k是一个正常数,那么可以通过以下步骤从目标分布中进行采样:

  1. 从提议分布q\left ( x \right )中抽取一个样本{x}'
  2. 生成一个均匀分布U(0,1)上的随机数u。
  3. u\leqslant \frac{p\left ( x \right )}{k\cdot q\left ( x \right )},则接受样本{x}'作为来自目标分布p\left ( x \right )的一个样本;否则,拒绝{x}'并回到步骤1继续尝试。

通过重复上述过程,可以得到一组近似服从目标分布p\left ( x \right )的样本集。

3. 算法原理

Rejection Sampling的核心思想在于通过引入一个覆盖目标分布的“提案”分布,以及一个合理的接受阈值,使得只有当提议样本符合该阈值条件时才被接受为目标分布的样本。具体来说,算法流程如下:

Step 1: 选择提议分布与常数k
选取一个已知且易于采样的提议分布q\left ( x \right ),确保它在所有x上至少是目标分布p\left ( x \right )的k倍。k的选择直接影响到算法的效率,过大的k可能导致大量样本被拒绝,而过小的k可能导致提议分布无法完全覆盖目标分布。

Step 2: 生成提议样本与接受阈值
从提议分布q\left ( x \right )中抽取一个样本{x}',同时生成一个均匀分布U(0,1)上的随机数u作为接受阈值。

Step 3: 接受/拒绝判断
计算接受概率\alpha = \frac{p\left ( x \right )}{k\cdot q\left ( x \right )},若u⩽α,则{x}'接受作为目标分布的样本;否则,拒绝{x}'并返回Step 2继续采样。

Step 4: 重复采样
重复上述步骤,直至收集到足够数量的接受样本,形成一个近似服从目标分布p\left ( x \right )的样本集。

4. 算法实现

以下是使用Python实现Rejection Sampling算法的详细代码及讲解:

 

Python

import numpy as np
from scipy.stats import norm

def target_distribution(x):
    """
    定义目标分布。此处以一个双峰分布为例,由两个高斯分布叠加而成,
    分别位于-2和2处,标准差均为1,权重分别为3/4和1/4。
    """
    return 0.75 * norm.pdf(x, loc=-2, scale=1) + 0.25 * norm.pdf(x, loc=2, scale=1)

def proposal_distribution(x):
    """
    定义提议分布。这里选择一个标准差为3的正态分布作为提议分布,
    它的分布宽度足以覆盖目标分布,确保有足够的概率覆盖目标分布的所有区域。
    """
    return norm.pdf(x, loc=0, scale=3)

def rejection_sampling(n_samples, target=target_distribution, proposal=proposal_distribution, k=1.5):
    """
    Rejection Sampling算法实现。

    参数:
    n_samples (int): 需要抽取的样本数量
    target (function): 目标分布的PDF函数
    proposal (function): 提议分布的PDF函数
    k (float): 提议分布与目标分布的最大比值,用于确定接受阈值

    返回:
    samples (list): 从目标分布中抽取的样本列表
    """
    samples = []  # 存储接受的样本

    while len(samples) < n_samples:
        # Step 1: 从提议分布中抽取一个样本
        x_prime = np.random.normal(0, 3)  # 提议分布为正态分布,这里直接使用numpy生成

        # Step 2: 生成一个均匀分布[0,1]上的随机数作为接受阈值
        u = np.random.uniform(0, 1)

        # Step 3: 计算接受概率,并进行接受/拒绝判断
        alpha = target(x_prime) / (k * proposal(x_prime))
        
        # 如果u小于等于接受概率,则接受样本;否则拒绝并继续循环
        if u <= alpha:
            samples.append(x_prime)

    return samples

# 示例:抽取1000个样本
n_samples = 1000
rejection_samples = rejection_sampling(n_samples)

代码讲解:

  1. target_distribution(x): 定义了我们要从中抽样的目标分布。在此例中,目标分布是一个双峰正态分布,由两个权重不同的高斯分布组成。这个函数返回给定输入x时目标分布的密度函数值。

  2. proposal_distribution(x): 定义提议分布,即一个较宽松的正态分布,其标准差足够大以确保能够覆盖目标分布的大部分甚至全部区域。提议分布应选择为已知且易于从其中采样的分布。

  3. rejection_sampling(): 主要的Rejection Sampling算法实现函数。接收参数包括所需样本数量、目标分布函数、提议分布函数以及提议分布与目标分布最大比值k。

    • Step 1: 从提议分布中抽取一个样本,这里直接使用np.random.normal()生成正态分布样本。

    • Step 2: 生成一个均匀分布U(0,1)上的随机数作为接受阈值,使用np.random.uniform()实现。

    • Step 3: 计算接受概率\alpha = \frac{p\left ( x \right )}{k\cdot q\left ( x \right )},其中p\left ( x{}' \right )为目标分布对当前样本{x}'的值,q\left ( x{}' \right )为提议分布对同一样本的值。然后比较接受阈值u与接受概率α,如果u≤α,则接受样本;否则拒绝样本。

    • 循环: 当接受的样本数量达到指定的n_samples时,停止采样并返回收集到的样本列表。

  4. 实例化运行:设置所需的样本数量(如1000),调用rejection_sampling()函数执行采样,并将结果存储在变量rejection_samples中。

这段代码实现了Rejection Sampling的基本流程,通过不断从提议分布中抽样并依据接受概率决定是否保留样本,最终得到近似服从目标分布的样本集合。请注意,实际应用中可能需要根据目标分布的具体特性调整提议分布和常数k,以优化采样效率。

5. 优缺点分析

优点:
  • 通用性:Rejection Sampling适用于任何已知概率密度函数的分布,无需知道其具体的解析形式,只需能够计算目标分布的值。
  • 直观易懂:算法思路清晰,易于理解和实现,尤其适合教学和初步探索复杂分布。
  • 无须依赖梯度信息:对于那些梯度难以计算或不存在的分布,Rejection Sampling依然适用。
缺点:
  • 效率低:随着目标分布复杂度增加,提议分布可能需要非常宽松以确保覆盖目标分布,导致大量样本被拒绝,尤其是当目标分布具有尖峰或稀疏区域时。
  • 难以确定最优提议分布与常数�k:实践中需要通过试错或专业知识来选择合适的提议分布和�k值,以平衡接受率与覆盖范围。
  • 不适合高维分布:随着维度增加,提议分布需覆盖的体积呈指数级增长,导致接受率急剧下降,不适用于高维复杂分布的采样。

6. 案例应用

金融风险建模:在计算信用违约互换(CDS)的公平价格时,需要模拟贷款违约的概率分布。由于违约事件的复杂性和罕见性,直接采样困难,但通过Rejection Sampling可以有效地从复杂的违约概率分布中抽样,辅助定价模型的构建。

生物信息学:在基因序列分析中,研究者可能面对的是高度复杂且未知的基因突变概率分布。Rejection Sampling可用于从这种分布中抽样,进而估计突变率、构建进化树等。

7. 对比与其他算法

与MCMC(如Metropolis-Hastings)比较

  • MCMC通过构造马尔可夫链在状态空间中随机游走,最终达到收敛于目标分布的状态。相比Rejection Sampling,MCMC在处理高维和复杂分布时更为高效,因为它不需要严格的覆盖整个支持集,而是通过局部转移来逼近全局分布。
  • MCMC的收敛速度取决于马尔可夫链的混合时间,可能需要较长的“烧瓶期”才能达到稳定状态。而Rejection Sampling每次采样都是独立的,没有“记忆效应”,但可能面临较低的接受率。

与重要性采样比较

  • 重要性采样同样利用一个提议分布来采样,但不是直接拒绝不符合条件的样本,而是赋予它们不同的权重,从而修正采样结果以逼近目标分布。重要性采样在处理轻尾分布时效率较高,因为即使提议分布未能完全覆盖目标分布,只要权重合理,仍能获得准确估计。
  • 重要性采样不需要设定常数�k,但需要计算和存储样本权重,对于大规模采样可能带来额外的内存开销。

8. 结论与展望

Rejection Sampling作为一类经典且直观的抽样方法,在处理特定类型的问题,特别是那些目标分布已知但难以直接采样的情况时,展现了其独特的实用价值。尽管在效率和处理高维分布方面存在局限性,但通过精心设计提议分布和适当调整算法参数,仍能在许多实际应用中取得满意的结果。

未来的研究方向可能包括:

  • 开发更先进的提议分布生成策略,结合机器学习技术自动优化提议分布与常数�k,以提高采样效率。
  • 研究Rejection Sampling与其他抽样方法(如MCMC、重要性采样)的融合策略,结合各自优势,应对更广泛和复杂的采样场景。
  • 探索Rejection Sampling在新兴领域的应用,如强化学习中的策略搜索、深度学习中的贝叶斯神经网络等,进一步拓宽其应用边界。
  • 27
    点赞
  • 28
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值